我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)

    Func<int, int> f = n =>
        n < 0
           ? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
           : (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));

    Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
    for (int i = -3; i <= 3  ; i++)
        Console.WriteLine(f(f(i)));
    Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647

打印:

2147483647
3
2
1
0
-1
-2
-3
-2147483647

其他回答

这适用于1073741823至1073741822范围:

int F(int n)
{
    if(n < 0)
    {
        if(n > -1073741824)
            n = -1073741824 + n;
        else n = -(n + 1073741824);
    }
    else
    {
        if(n < 1073741823)
            n = 1073741823 + n;
        else n = -(n - 1073741823);
    }
    return n;
}

它的工作原理是获取32位有符号整数的可用范围并将其一分为二。函数的第一次迭代将n自身置于该范围之外。第二次迭代检查它是否在该范围之外-如果是,则将其放回该范围内,但使其为负值。

这实际上是一种保留关于值n的额外“位”信息的方法。

这里有一个解决方案,其灵感来自于不能使用复数来解决这个问题的要求或声明。

乘以-1的平方根是一个想法,但似乎失败了,因为-1没有整数的平方根。但是,使用mathematica这样的程序可以得出如下公式

(18494364652+1)模(232-3)=0。

这几乎和平方根为-1一样好。函数的结果必须是有符号整数。因此,我将使用一个修改的模运算mods(x,n),它返回与x模n最接近0的整数y。只有极少数编程语言能够成功地进行模运算,但它很容易被定义。例如,在python中,它是:

def mods(x, n):
    y = x % n
    if y > n/2: y-= n
    return y

使用上面的公式,问题现在可以解决为

def f(x):
    return mods(x*1849436465, 2**32-3)

对于[-231-2231-2]范围内的所有整数,这满足f(f(x))=-x。f(x)的结果也在这个范围内,但当然计算需要64位整数。

另一种利用短路的Javascript解决方案。

​function f(n) {return n.inv || {inv:-n}}

f(f(1)) => -1
f(f(-1)) => 1

从来没有人说过f(x)必须是同一类型。

def f(x):
    if type(x) == list:
        return -x[0]
    return [x]


f(2) => [2]
f(f(2)) => -2

类似于python中的函数重载解决方案:

def f(number):
 if type(number) != type([]):
  return [].append(number)
 else:
  return -1*number[0]

备选方案:静态数据成员