如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

哈弗辛公式在大多数情况下都是很好的公式,其他答案已经包含了它所以我就不占用空间了。但重要的是要注意,无论使用什么公式(是的,不仅仅是一个)。因为可能的精度范围很大,以及所需的计算时间。公式的选择需要更多的思考,而不是简单的无脑答案。

这个帖子来自nasa的一个人,是我在讨论这些选项时发现的最好的一个

http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html

例如,如果您只是在100英里半径内按距离对行进行排序。地平公式比哈弗辛公式快得多。

HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/

a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;

注意这里只有一个余弦和一个平方根。在哈弗辛公式中有9个。

其他回答

我不喜欢添加另一个答案,但谷歌地图API v.3具有球形几何(以及更多)。在将你的WGS84转换为十进制度后,你可以这样做:

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>  

distance = google.maps.geometry.spherical.computeDistanceBetween(
    new google.maps.LatLng(fromLat, fromLng), 
    new google.maps.LatLng(toLat, toLng));

关于谷歌的计算有多精确,甚至使用了什么模型都没有任何消息(尽管它说的是“球面”而不是“大地水准面”。顺便说一下,“直线”距离显然不同于一个人在地球表面旅行的距离,而这似乎是每个人都在假设的。

要计算球体上两点之间的距离,你需要做大圆计算。

如果你需要将距离重新投影到平面上,MapTools中有许多C/ c++库可以帮助你进行地图投影。要做到这一点,你需要不同坐标系的投影字符串。

你可能还会发现MapWindow是一个可视化点的有用工具。此外,由于它是开源的,它是如何使用project.dll库的有用指南,它似乎是核心的开源投影库。

这是一个简单的javascript函数,从这个链接可能是有用的。不知何故相关,但我们使用谷歌地球javascript插件而不是地图

function getApproximateDistanceUnits(point1, point2) {

    var xs = 0;
    var ys = 0;

    xs = point2.getX() - point1.getX();
    xs = xs * xs;

    ys = point2.getY() - point1.getY();
    ys = ys * ys;

    return Math.sqrt(xs + ys);
}

单位不是距离,而是相对于坐标的比率。还有其他相关的计算,你可以在这里代替getApproximateDistanceUnits函数链接

然后我使用这个函数来查看经纬度是否在半径内

function isMapPlacemarkInRadius(point1, point2, radi) {
    if (point1 && point2) {
        return getApproximateDistanceUnits(point1, point2) <= radi;
    } else {
        return 0;
    }
}

点可以定义为

 $$.getPoint = function(lati, longi) {
        var location = {
            x: 0,
            y: 0,
            getX: function() { return location.x; },
            getY: function() { return location.y; }
        };
        location.x = lati;
        location.y = longi;

        return location;
    };

然后你可以做你的事情,看看一个点是否在一个半径范围内,比如:

 //put it on the map if within the range of a specified radi assuming 100,000,000 units
        var iconpoint = Map.getPoint(pp.latitude, pp.longitude);
        var centerpoint = Map.getPoint(Settings.CenterLatitude, Settings.CenterLongitude);

        //approx ~200 units to show only half of the globe from the default center radius
        if (isMapPlacemarkInRadius(centerpoint, iconpoint, 120)) {
            addPlacemark(pp.latitude, pp.longitude, pp.name);
        }
        else {
            otherSidePlacemarks.push({
                latitude: pp.latitude,
                longitude: pp.longitude,
                name: pp.name
            });

        }

下面是另一个转换为Ruby代码的代码:

include Math
#Note: from/to = [lat, long]

def get_distance_in_km(from, to)
  radians = lambda { |deg| deg * Math.PI / 180 }
  radius = 6371 # Radius of the earth in kilometer
  dLat = radians[to[0]-from[0]]
  dLon = radians[to[1]-from[1]]

  cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)

  c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product)) 
  return radius * c # Distance in kilometer
end

下面是一个c#实现:

static class DistanceAlgorithm
{
    const double PIx = 3.141592653589793;
    const double RADIUS = 6378.16;

    /// <summary>
    /// Convert degrees to Radians
    /// </summary>
    /// <param name="x">Degrees</param>
    /// <returns>The equivalent in radians</returns>
    public static double Radians(double x)
    {
        return x * PIx / 180;
    }

    /// <summary>
    /// Calculate the distance between two places.
    /// </summary>
    /// <param name="lon1"></param>
    /// <param name="lat1"></param>
    /// <param name="lon2"></param>
    /// <param name="lat2"></param>
    /// <returns></returns>
    public static double DistanceBetweenPlaces(
        double lon1,
        double lat1,
        double lon2,
        double lat2)
    {
        double dlon = Radians(lon2 - lon1);
        double dlat = Radians(lat2 - lat1);

        double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
        double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
        return angle * RADIUS;
    }

}