NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
NumPy提出了一种通过np.argmax获取数组最大值索引的方法。
我想要一个类似的东西,但返回N个最大值的索引。
例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。
当前回答
当top_k<<axis_length时,它优于argsort。
import numpy as np
def get_sorted_top_k(array, top_k=1, axis=-1, reverse=False):
if reverse:
axis_length = array.shape[axis]
partition_index = np.take(np.argpartition(array, kth=-top_k, axis=axis),
range(axis_length - top_k, axis_length), axis)
else:
partition_index = np.take(np.argpartition(array, kth=top_k, axis=axis), range(0, top_k), axis)
top_scores = np.take_along_axis(array, partition_index, axis)
# resort partition
sorted_index = np.argsort(top_scores, axis=axis)
if reverse:
sorted_index = np.flip(sorted_index, axis=axis)
top_sorted_scores = np.take_along_axis(top_scores, sorted_index, axis)
top_sorted_indexes = np.take_along_axis(partition_index, sorted_index, axis)
return top_sorted_scores, top_sorted_indexes
if __name__ == "__main__":
import time
from sklearn.metrics.pairwise import cosine_similarity
x = np.random.rand(10, 128)
y = np.random.rand(1000000, 128)
z = cosine_similarity(x, y)
start_time = time.time()
sorted_index_1 = get_sorted_top_k(z, top_k=3, axis=1, reverse=True)[1]
print(time.time() - start_time)
其他回答
这将比完整排序更快,这取决于原始数组的大小和选择的大小:
>>> A = np.random.randint(0,10,10)
>>> A
array([5, 1, 5, 5, 2, 3, 2, 4, 1, 0])
>>> B = np.zeros(3, int)
>>> for i in xrange(3):
... idx = np.argmax(A)
... B[i]=idx; A[idx]=0 #something smaller than A.min()
...
>>> B
array([0, 2, 3])
当然,这涉及到对原始数组的篡改。你可以修复(如果需要)通过复制或替换回原始值. ...对你的用例来说,哪个更便宜。
对于多维数组,可以使用axis关键字,以便沿着预期的轴应用分区。
# For a 2D array
indices = np.argpartition(arr, -N, axis=1)[:, -N:]
对于抓取物品:
x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)
但请注意,这不会返回一个排序的结果。在这种情况下,你可以沿着预期的轴使用np.argsort():
indices = np.argsort(arr, axis=1)[:, -N:]
# Result
x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)
这里有一个例子:
In [42]: a = np.random.randint(0, 20, (10, 10))
In [44]: a
Out[44]:
array([[ 7, 11, 12, 0, 2, 3, 4, 10, 6, 10],
[16, 16, 4, 3, 18, 5, 10, 4, 14, 9],
[ 2, 9, 15, 12, 18, 3, 13, 11, 5, 10],
[14, 0, 9, 11, 1, 4, 9, 19, 18, 12],
[ 0, 10, 5, 15, 9, 18, 5, 2, 16, 19],
[14, 19, 3, 11, 13, 11, 13, 11, 1, 14],
[ 7, 15, 18, 6, 5, 13, 1, 7, 9, 19],
[11, 17, 11, 16, 14, 3, 16, 1, 12, 19],
[ 2, 4, 14, 8, 6, 9, 14, 9, 1, 5],
[ 1, 10, 15, 0, 1, 9, 18, 2, 2, 12]])
In [45]: np.argpartition(a, np.argmin(a, axis=0))[:, 1:] # 1 is because the first item is the minimum one.
Out[45]:
array([[4, 5, 6, 8, 0, 7, 9, 1, 2],
[2, 7, 5, 9, 6, 8, 1, 0, 4],
[5, 8, 1, 9, 7, 3, 6, 2, 4],
[4, 5, 2, 6, 3, 9, 0, 8, 7],
[7, 2, 6, 4, 1, 3, 8, 5, 9],
[2, 3, 5, 7, 6, 4, 0, 9, 1],
[4, 3, 0, 7, 8, 5, 1, 2, 9],
[5, 2, 0, 8, 4, 6, 3, 1, 9],
[0, 1, 9, 4, 3, 7, 5, 2, 6],
[0, 4, 7, 8, 5, 1, 9, 2, 6]])
In [46]: np.argpartition(a, np.argmin(a, axis=0))[:, -3:]
Out[46]:
array([[9, 1, 2],
[1, 0, 4],
[6, 2, 4],
[0, 8, 7],
[8, 5, 9],
[0, 9, 1],
[1, 2, 9],
[3, 1, 9],
[5, 2, 6],
[9, 2, 6]])
In [89]: a[np.repeat(np.arange(x), 3), ind.ravel()].reshape(x, 3)
Out[89]:
array([[10, 11, 12],
[16, 16, 18],
[13, 15, 18],
[14, 18, 19],
[16, 18, 19],
[14, 14, 19],
[15, 18, 19],
[16, 17, 19],
[ 9, 14, 14],
[12, 15, 18]])
我能想到的最简单的是:
>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])
这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。
如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。
较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作
>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])
>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])
与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:
>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])
以这种方式获得排在前k位的元素需要O(n + k log k)时间。
使用argpartition的向量化2D实现:
k = 3
probas = np.array([
[.6, .1, .15, .15],
[.1, .6, .15, .15],
[.3, .1, .6, 0],
])
k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]
# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster
k_values = probas.flatten()[k_indices_flat]
# k_indices:
# array([[0, 2, 3],
# [1, 2, 3],
# [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
# [0.6 , 0.15, 0.15],
# [0.6 , 0.3 , 0.1 ]])