给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。

然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。

更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。

其他回答

rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。

int ans = 0;
while (ans == 0) 
{
     for (int i=0; i<3; i++) 
     {
          while ((r = rand5()) == 3){};
          ans += (r < 3) >> i
     }
}

(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)

假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。

int rand7() {
  i = 5 * rand5() + rand5();
  max = 25;
  //i is uniform among {0 ... max-1}
  while(i < max%7) {
    //i is uniform among {0 ... (max%7 - 1)}
    i *= 5;
    i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
    max %= 7;
    max *= 5; //once again, i is uniform among {0 ... max-1}
  }
  return(i%7);
}

我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。

编辑:在这个方程中,期望调用rand5()的次数是x:

x =  2     * 21/25
   + 3     *  4/25 * 14/20
   + 4     *  4/25 *  6/20 * 28/30
   + 5     *  4/25 *  6/20 *  2/30 * 7/10
   + 6     *  4/25 *  6/20 *  2/30 * 3/10 * 14/15
   + (6+x) *  4/25 *  6/20 *  2/30 * 3/10 *  1/15
x = about 2.21 calls to rand5()

算法:

7可以用3位的序列表示

使用rand(5)随机地用0或1填充每一位。 例如:调用rand(5)和

如果结果是1或2,则用0填充位 如果结果是4或5,则用1填充位 如果结果是3,则忽略并重新执行(拒绝)

这样,我们可以用0/1随机填充3位,从而得到1-7中的数字。

编辑:这似乎是最简单和最有效的答案,所以这里有一些代码:

public static int random_7() {
    int returnValue = 0;
    while (returnValue == 0) {
        for (int i = 1; i <= 3; i++) {
            returnValue = (returnValue << 1) + random_5_output_2();
        }
    }
    return returnValue;
}

private static int random_5_output_2() {
    while (true) {
        int flip = random_5();

        if (flip < 3) {
            return 0;
        }
        else if (flip > 3) {
            return 1;
        }
    }
}

这是我在看过别人的答案后得出的最简单的答案:

def r5tor7():
    while True:
        cand = (5 * r5()) + r5()
        if cand < 27:
            return cand

Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:

from collections import defaultdict

def r5_outcome(n):
    if not n:
        yield []
    else:
        for i in range(1, 6):
            for j in r5_outcome(n-1):
                yield [i] + j

def test_r7():
    d = defaultdict(int)
    for x in r5_outcome(2):
        s = sum([x[i] * 5**i for i in range(len(x))])
        if s < 27:
            d[s] += 1
    print len(d), d

R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。