给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法

假设我们已经在我们的作用域中有rand5():

def rand7():
    # twoway = 0 or 1 in the same probability
    twoway = None
    while not twoway in (1, 2):
        twoway = rand5()
    twoway -= 1

    ans = rand5() + twoway * 5

    return ans if ans in range(1,8) else rand7()

解释

我们可以把这个程序分成两个部分:

循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。

附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。

但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。

结果

我做了一个简单的测试来观察我的答案的分布。

result = [ rand7() for x in xrange(777777) ]

ans = {
    1: 0,
    2: 0,
    3: 0,
    4: 0,
    5: 0,
    6: 0,
    7: 0,
}

for i in result:
    ans[i] += 1

print ans

它给了

{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}

因此,我们可以知道这个答案是正态分布。

简单的答案

如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:

def rand7():
    ans = rand5() + (rand5()-1) * 5
    return ans if ans < 8 else rand7()

这增加了大于8的值的概率,但这可能是这个问题的最短答案。

其他回答

int getOneToSeven(){
    int added = 0;
    for(int i = 1; i<=7; i++){
        added += getOneToFive();
    }
    return (added)%7+1;
}

因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:


int i;
do
{
  i = 5 * (rand5() - 1) + rand5();  // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;  // result is now uniformly random between 1 and 7

这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。

简单高效:

int rand7 ( void )
{
    return 4; // this number has been calculated using
              // rand5() and is in the range 1..7
}

(灵感来自你最喜欢的“程序员”卡通?)

只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:

$num = 0;
$possibilities = 1;

sub rand7
{
  while( $possibilities < 7 )
  {
    $num = $num * 5 + int(rand(5));
    $possibilities *= 5;
  }
  my $result = $num % 7;
  $num = int( $num / 7 );
  $possibilities /= 7;
  return $result;
}
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]