给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

只需要缩放第一个函数的输出

0) you have a number in range 1-5
1) subtract 1 to make it in range 0-4
2) multiply by (7-1)/(5-1) to make it in range 0-6
3) add 1 to increment the range: Now your result is in between 1-7

其他回答

Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。

知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0

想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。

import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
    return np.random.randint(1,6)

n_trials = 1000
samples = [rand5() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=True))
# 4    0.2042
# 5    0.2041
# 2    0.2010
# 1    0.1981
# 3    0.1926
# dtype: float64
    
def rand7(): # magic algebra
    x = sum(rand5() for _ in range(7))
    return x%7 + 1

samples = [rand7() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=False))
# 6    1475
# 2    1475
# 3    1456
# 1    1423
# 7    1419
# 4    1393
# 5    1359
# dtype: int64
    
df = pd.DataFrame([
    pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
    for _ in range(1000)
])
df.describe()
#      1    2   3   4   5   6   7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean  0.142885    0.142928    0.142523    0.142266    0.142704    0.143048    0.143646
# std   0.010807    0.011526    0.010966    0.011223    0.011052    0.010983    0.011153
# min   0.112000    0.108000    0.101000    0.110000    0.100000    0.109000    0.110000
# 25%   0.135000    0.135000    0.135000    0.135000    0.135000    0.135000    0.136000
# 50%   0.143000    0.142000    0.143000    0.142000    0.143000    0.142000    0.143000
# 75%   0.151000    0.151000    0.150000    0.150000    0.150000    0.150000    0.151000
# max   0.174000    0.181000    0.175000    0.178000    0.189000    0.176000    0.179000

我觉得你们都想多了。难道这个简单的解决方案行不通吗?

int rand7(void)
{
    static int startpos = 0;
    startpos = (startpos+5) % (5*7);
    return (((startpos + rand5()-1)%7)+1);
}

为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)

它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:

def ranndomNo7():
    import random
    rand5 = random.randint(4)    # Produces range: [0, 4]
    rand7 = int(rand5 / 5 * 7)   # /5, *7, +0.5 and floor()
    return rand7

这不是很容易吗?

下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。

public static int random_7(Random rg) {
    int returnValue = 0;
    while (returnValue == 0) {
        for (int i = 1; i <= 3; i++) {
            returnValue = (returnValue << 1) + SimulateFairCoin(rg);
        }
    }
    return returnValue;
}

private static int SimulateFairCoin(Random rg) {
    while (true) {
        int flipOne = random_5_mod_2(rg);
        int flipTwo = random_5_mod_2(rg);

        if (flipOne == 0 && flipTwo == 1) {
            return 0;
        }
        else if (flipOne == 1 && flipTwo == 0) {
            return 1;
        }
    }
}

private static int random_5_mod_2(Random rg) {
    return random_5(rg) % 2;
}

private static int random_5(Random rg) {
    return rg.Next(5) + 1;
}    

你需要的函数是rand1_7(),我写了rand1_5(),这样你就可以测试它并绘制它。

import numpy
def rand1_5():
    return numpy.random.randint(5)+1

def rand1_7():
    q = 0
    for i in xrange(7):  q+= rand1_5()
    return q%7 + 1