给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

只需要缩放第一个函数的输出

0) you have a number in range 1-5
1) subtract 1 to make it in range 0-4
2) multiply by (7-1)/(5-1) to make it in range 0-6
3) add 1 to increment the range: Now your result is in between 1-7

其他回答

面对这么复杂的答案,我觉得自己很蠢。

为什么不能:

int random1_to_7()
{
  return (random1_to_5() * 7) / 5;  
}

?

int getOneToSeven(){
    int added = 0;
    for(int i = 1; i<=7; i++){
        added += getOneToFive();
    }
    return (added)%7+1;
}

Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。

知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0

想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。

import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
    return np.random.randint(1,6)

n_trials = 1000
samples = [rand5() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=True))
# 4    0.2042
# 5    0.2041
# 2    0.2010
# 1    0.1981
# 3    0.1926
# dtype: float64
    
def rand7(): # magic algebra
    x = sum(rand5() for _ in range(7))
    return x%7 + 1

samples = [rand7() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=False))
# 6    1475
# 2    1475
# 3    1456
# 1    1423
# 7    1419
# 4    1393
# 5    1359
# dtype: int64
    
df = pd.DataFrame([
    pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
    for _ in range(1000)
])
df.describe()
#      1    2   3   4   5   6   7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean  0.142885    0.142928    0.142523    0.142266    0.142704    0.143048    0.143646
# std   0.010807    0.011526    0.010966    0.011223    0.011052    0.010983    0.011153
# min   0.112000    0.108000    0.101000    0.110000    0.100000    0.109000    0.110000
# 25%   0.135000    0.135000    0.135000    0.135000    0.135000    0.135000    0.136000
# 50%   0.143000    0.142000    0.143000    0.142000    0.143000    0.142000    0.143000
# 75%   0.151000    0.151000    0.150000    0.150000    0.150000    0.150000    0.151000
# max   0.174000    0.181000    0.175000    0.178000    0.189000    0.176000    0.179000

这里我们使用约定的rand(n) -> [0, n - 1]

从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。

然而,这样做是可能的。我们基本上有这样的分布:

这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。

事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。

因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得

p(x) = 5 / 35 = 1 / 7       for all x in [0, 6]

这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。

这为我们提供了以下python函数:

def rand_range_transform(rands):
    """
    returns a uniform random number in [0, len(rands) - 1]
    if all r in rands are independent random numbers from the same uniform distribution
    """
    return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic

可以这样使用:

rand5 = lambda : random.randrange(5)

def rand7():
    return rand_range_transform([rand5() for _ in range(7)])

如果我们调用rand7() 70000次,我们可以得到:

max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0:  10019
1:  10016
2:  10071
3:  10044
4:  9775
5:  10042
6:  10033

这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。

也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。

但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。

package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}