给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。
知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0
想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。
import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
return np.random.randint(1,6)
n_trials = 1000
samples = [rand5() for _ in range(n_trials)]
display(pd.Series(samples).value_counts(normalize=True))
# 4 0.2042
# 5 0.2041
# 2 0.2010
# 1 0.1981
# 3 0.1926
# dtype: float64
def rand7(): # magic algebra
x = sum(rand5() for _ in range(7))
return x%7 + 1
samples = [rand7() for _ in range(n_trials)]
display(pd.Series(samples).value_counts(normalize=False))
# 6 1475
# 2 1475
# 3 1456
# 1 1423
# 7 1419
# 4 1393
# 5 1359
# dtype: int64
df = pd.DataFrame([
pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
for _ in range(1000)
])
df.describe()
# 1 2 3 4 5 6 7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean 0.142885 0.142928 0.142523 0.142266 0.142704 0.143048 0.143646
# std 0.010807 0.011526 0.010966 0.011223 0.011052 0.010983 0.011153
# min 0.112000 0.108000 0.101000 0.110000 0.100000 0.109000 0.110000
# 25% 0.135000 0.135000 0.135000 0.135000 0.135000 0.135000 0.136000
# 50% 0.143000 0.142000 0.143000 0.142000 0.143000 0.142000 0.143000
# 75% 0.151000 0.151000 0.150000 0.150000 0.150000 0.150000 0.151000
# max 0.174000 0.181000 0.175000 0.178000 0.189000 0.176000 0.179000
其他回答
对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。
然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。
更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。
下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。
public static int random_7(Random rg) {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + SimulateFairCoin(rg);
}
}
return returnValue;
}
private static int SimulateFairCoin(Random rg) {
while (true) {
int flipOne = random_5_mod_2(rg);
int flipTwo = random_5_mod_2(rg);
if (flipOne == 0 && flipTwo == 1) {
return 0;
}
else if (flipOne == 1 && flipTwo == 0) {
return 1;
}
}
}
private static int random_5_mod_2(Random rg) {
return random_5(rg) % 2;
}
private static int random_5(Random rg) {
return rg.Next(5) + 1;
}
只需要缩放第一个函数的输出
0) you have a number in range 1-5
1) subtract 1 to make it in range 0-4
2) multiply by (7-1)/(5-1) to make it in range 0-6
3) add 1 to increment the range: Now your result is in between 1-7
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。
int randbit( void )
{
while( 1 )
{
int r = rand5();
if( r <= 4 ) return(r & 1);
}
}
int randint( int nbits )
{
int result = 0;
while( nbits-- )
{
result = (result<<1) | randbit();
}
return( result );
}
int rand7( void )
{
while( 1 )
{
int r = randint( 3 ) + 1;
if( r <= 7 ) return( r );
}
}