给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。
最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。
然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。
这就给出了L(m)的值约为m (log5/log7)也就是。82米。
上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。
问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?
如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。
如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。
那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。
如果我们一直代入,我们得到:
T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m
因此
L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)
另一种说法是:
If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)
最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。
然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。
最坏的情况是我们只能找到k和s.t 5^m = kx7+s。
Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)
其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:
T7(5^m) = m (Log5/Log7)+e(m)
一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。
整个问题取决于5^m的7位数字对不同m值的分布。
我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。
其他回答
在php中
function rand1to7() {
do {
$output_value = 0;
for ($i = 0; $i < 28; $i++) {
$output_value += rand1to5();
}
while ($output_value != 140);
$output_value -= 12;
return floor($output_value / 16);
}
循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。
我想到了一个解决这个问题的有趣方法,想和大家分享一下。
function rand7() {
var returnVal = 4;
for (var n=0; n<3; n++) {
var rand = rand5();
if (rand==1||rand==2){
returnVal+=1;
}
else if (rand==3||rand==4) {
returnVal-=1;
}
}
return returnVal;
}
我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)
对于0-7的值,你有以下内容:
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
从左到右,Rand5()有p(1) ={2/ 5,2 / 5,3 /5}。因此,如果我们补这些概率分布(~Rand5()),我们应该能够使用它来生成我们的数字。我稍后会给出解决方案。有人有什么想法吗?
R
如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。
最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。
然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。
这就给出了L(m)的值约为m (log5/log7)也就是。82米。
上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。
问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?
如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。
如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。
那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。
如果我们一直代入,我们得到:
T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m
因此
L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)
另一种说法是:
If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)
最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。
然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。
最坏的情况是我们只能找到k和s.t 5^m = kx7+s。
Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)
其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:
T7(5^m) = m (Log5/Log7)+e(m)
一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。
整个问题取决于5^m的7位数字对不同m值的分布。
我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。
Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。
知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0
想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。
import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
return np.random.randint(1,6)
n_trials = 1000
samples = [rand5() for _ in range(n_trials)]
display(pd.Series(samples).value_counts(normalize=True))
# 4 0.2042
# 5 0.2041
# 2 0.2010
# 1 0.1981
# 3 0.1926
# dtype: float64
def rand7(): # magic algebra
x = sum(rand5() for _ in range(7))
return x%7 + 1
samples = [rand7() for _ in range(n_trials)]
display(pd.Series(samples).value_counts(normalize=False))
# 6 1475
# 2 1475
# 3 1456
# 1 1423
# 7 1419
# 4 1393
# 5 1359
# dtype: int64
df = pd.DataFrame([
pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
for _ in range(1000)
])
df.describe()
# 1 2 3 4 5 6 7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean 0.142885 0.142928 0.142523 0.142266 0.142704 0.143048 0.143646
# std 0.010807 0.011526 0.010966 0.011223 0.011052 0.010983 0.011153
# min 0.112000 0.108000 0.101000 0.110000 0.100000 0.109000 0.110000
# 25% 0.135000 0.135000 0.135000 0.135000 0.135000 0.135000 0.136000
# 50% 0.143000 0.142000 0.143000 0.142000 0.143000 0.142000 0.143000
# 75% 0.151000 0.151000 0.150000 0.150000 0.150000 0.150000 0.151000
# max 0.174000 0.181000 0.175000 0.178000 0.189000 0.176000 0.179000