给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
如果有人能就这一点给我反馈,那就太酷了,我使用了没有assert模式的JUNIT,因为在Eclipse中运行它很容易,也很快速,我也可以只定义一个主方法。顺便说一下,我假设rand5给出的值为0-4,加上1将得到1-5,rand7也是如此……所以讨论应该是解决方案,它的分布,而不是它是从0-4还是1-5…
package random;
import java.util.Random;
import org.junit.Test;
public class RandomTest {
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[7];
for(int i = 0; i < times; i++) {
int rand7 = rand7();
indexes[rand7]++;
}
for(int i = 0; i < 7; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int rand7() {
return (rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5()) % 7;
}
public int rand5() {
return new Random().nextInt(5);
}
}
当我运行它时,我得到这样的结果:
Value 0: 14308087
Value 1: 14298303
Value 2: 14279731
Value 3: 14262533
Value 4: 14269749
Value 5: 14277560
Value 6: 14304037
这似乎是一个非常公平的分配,不是吗?
如果我将rand5()添加更少或更多次(其中次数不能被7整除),分布会清楚地显示偏移量。例如,将rand5()相加3次:
Value 0: 15199685
Value 1: 14402429
Value 2: 12795649
Value 3: 12796957
Value 4: 14402252
Value 5: 15202778
Value 6: 15200250
因此,这将导致以下结果:
public int rand(int range) {
int randomValue = 0;
for(int i = 0; i < range; i++) {
randomValue += rand5();
}
return randomValue % range;
}
然后,我可以更进一步:
public static final int ORIGN_RANGE = 5;
public static final int DEST_RANGE = 7;
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[DEST_RANGE];
for(int i = 0; i < times; i++) {
int rand7 = convertRand(DEST_RANGE, ORIGN_RANGE);
indexes[rand7]++;
}
for(int i = 0; i < DEST_RANGE; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int convertRand(int destRange, int originRange) {
int randomValue = 0;
for(int i = 0; i < destRange; i++) {
randomValue += rand(originRange);
}
return randomValue % destRange;
}
public int rand(int range) {
return new Random().nextInt(range);
}
我尝试用不同的值替换destRange和originRange(甚至ORIGIN为7,DEST为13),我得到了这样的分布:
Value 0: 7713763
Value 1: 7706552
Value 2: 7694697
Value 3: 7695319
Value 4: 7688617
Value 5: 7681691
Value 6: 7674798
Value 7: 7680348
Value 8: 7685286
Value 9: 7683943
Value 10: 7690283
Value 11: 7699142
Value 12: 7705561
从这里我可以得出的结论是,你可以通过求和起始随机“目的地”时间来将任意随机改变为任意随机。这将得到一种高斯分布(中间值更有可能,边缘值更不常见)。然而,目标模量似乎均匀地分布在这个高斯分布中…如果能得到数学家的反馈就太好了……
最酷的是,成本是100%可预测的和恒定的,而其他解决方案导致无限循环的概率很小……
其他回答
function rand7() {
while (true) { //lowest base 5 random number > 7 reduces memory
int num = (rand5()-1)*5 + rand5()-1;
if (num < 21) // improves performance
return 1 + num%7;
}
}
Python代码:
from random import randint
def rand7():
while(True):
num = (randint(1, 5)-1)*5 + randint(1, 5)-1
if num < 21:
return 1 + num%7
100000次运行的测试分布:
>>> rnums = []
>>> for _ in range(100000):
rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}
Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:
abstract class RNG {
def apply(): Int
}
class Random5 extends RNG {
val rng = new scala.util.Random
var count = 0
def apply() = { count += 1 ; rng.nextInt(5) }
}
class FiveSevener(five: RNG) {
val sevens = new Array[Int](9)
var nsevens = 0
val to9 = 40353607;
val to8 = 5764801;
val to7 = 823543;
def loadSevens(value: Int, count: Int) {
nsevens = 0;
var remaining = value;
while (nsevens < count) {
sevens(nsevens) = remaining % 7
remaining /= 7
nsevens += 1
}
}
def loadSevens {
var fivepow11 = 0;
var i=0
while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
fivepow11 -= to9
if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
fivepow11 -= to8
if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
else loadSevens
}
def apply() = {
if (nsevens==0) loadSevens
nsevens -= 1
sevens(nsevens)
}
}
如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:
scala> val five = new Random5
five: Random5 = Random5@e9c592
scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423
scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)
scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000
scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)
scala> five.count
res1: Int = 125902876
分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1
编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:
value Count Error%
1 11158 -0.0035
2 11144 -0.0214
3 11144 -0.0214
4 11158 -0.0035
5 11172 +0.0144
6 11177 +0.0208
7 11172 +0.0144
通过转换到的和
n Error%
10 +/- 1e-3,
12 +/- 1e-4,
14 +/- 1e-5,
16 +/- 1e-6,
...
28 +/- 3e-11
似乎每增加2就增加一个数量级
BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:
P [x,n]是给定n次调用rand5,输出=x可能发生的次数。
p[1,1] ... p[5,1] = 1
p[6,1] ... p[7,1] = 0
p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]
function Rand7
put 200 into x
repeat while x > 118
put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
end repeat
return (x mod 7) + 1
end Rand7
3次调用Rand5,平均125次中只重复6次。
把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。
4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。