给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

PHP解决方案

<?php
function random_5(){
    return rand(1,5);
}


function random_7(){
 $total = 0;

    for($i=0;$i<7;$i++){
        $total += random_5();
    }

    return ($total%7)+1; 
}

echo random_7();
?>

其他回答

function rand7() {
    while (true) { //lowest base 5 random number > 7 reduces memory
        int num = (rand5()-1)*5 + rand5()-1;
    if (num < 21)  // improves performance
        return 1 + num%7;
    }
}

Python代码:

from random import randint
def rand7():
    while(True):
        num = (randint(1, 5)-1)*5 + randint(1, 5)-1
        if num < 21:
                return 1 + num%7

100000次运行的测试分布:

>>> rnums = []
>>> for _ in range(100000):
    rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}

假设rand给予所有位相同的权重,然后用上界进行掩码。

int i = rand(5) ^ (rand(5) & 2);

Rand(5)只能返回:1b, 10b, 11b, 100b, 101b。有时候你只需要考虑设置2位。

简单的解决方案已经被很好地覆盖了:为一个random7结果取两个random5样本,如果结果超出了产生均匀分布的范围,就重新做一次。如果你的目标是减少对random5的调用次数,这是非常浪费的——对于每个random7输出,对random5的平均调用次数是2.38,而不是2,这是由于丢弃样本的数量。

你可以通过使用更多的random5输入一次生成多个random7输出来做得更好。对于使用31位整数计算的结果,最优结果是使用12次调用random5生成9个random7输出,平均每个输出调用1.34次。它是高效的,因为244140625个结果中只有2018983个需要废弃,或者不到1%。

Python演示:

def random5():
    return random.randint(1, 5)

def random7gen(n):
    count = 0
    while n > 0:
        samples = 6 * 7**9
        while samples >= 6 * 7**9:
            samples = 0
            for i in range(12):
                samples = samples * 5 + random5() - 1
                count += 1
        samples //= 6
        for outputs in range(9):
            yield samples % 7 + 1, count
            samples //= 7
            count = 0
            n -= 1
            if n == 0: break

>>> from collections import Counter
>>> Counter(x for x,i in random7gen(10000000))
Counter({2: 1430293, 4: 1429298, 1: 1428832, 7: 1428571, 3: 1428204, 5: 1428134, 6: 1426668})
>>> sum(i for x,i in random7gen(10000000)) / 10000000.0
1.344606

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。

以下是我的发现:

Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)

然后我们得到1~7的范围,这是我们正在寻找的Random7。