给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
Here is a solution that tries to minimize the number of calls to rand5() while keeping the implementation simple and efficient; in particular, it does not require arbitrary large integers unlike Adam Rosenfield’s second answer. It exploits the fact that 23/19 = 1.21052... is a good rational approximation to log(7)/log(5) = 1.20906..., thus we can generate 19 random elements of {1,...,7} out of 23 random elements of {1,...,5} by rejection sampling with only a small rejection probability. On average, the algorithm below takes about 1.266 calls to rand5() for each call to rand7(). If the distribution of rand5() is uniform, so is rand7().
uint_fast64_t pool;
int capacity = 0;
void new_batch (void)
{
uint_fast64_t r;
int i;
do {
r = 0;
for (i = 0; i < 23; i++)
r = 5 * r + (rand5() - 1);
} while (r >= 11398895185373143ULL); /* 7**19, a bit less than 5**23 */
pool = r;
capacity = 19;
}
int rand7 (void)
{
int r;
if (capacity == 0)
new_batch();
r = pool % 7;
pool /= 7;
capacity--;
return r + 1;
}
其他回答
下面是一个利用c++ 11特性的答案
#include <functional>
#include <iostream>
#include <ostream>
#include <random>
int main()
{
std::random_device rd;
unsigned long seed = rd();
std::cout << "seed = " << seed << std::endl;
std::mt19937 engine(seed);
std::uniform_int_distribution<> dist(1, 5);
auto rand5 = std::bind(dist, engine);
const int n = 20;
for (int i = 0; i != n; ++i)
{
std::cout << rand5() << " ";
}
std::cout << std::endl;
// Use a lambda expression to define rand7
auto rand7 = [&rand5]()->int
{
for (int result = 0; ; result = 0)
{
// Take advantage of the fact that
// 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
// So we only have to discard one out of every 15625 numbers generated.
// Generate a 6-digit number in base 5
for (int i = 0; i != 6; ++i)
{
result = 5 * result + (rand5() - 1);
}
// result is in the range [0, 15625)
if (result == 15625 - 1)
{
// Discard this number
continue;
}
// We now know that result is in the range [0, 15624), a range that can
// be divided evenly into 7 buckets guaranteeing uniformity
result /= 2232;
return 1 + result;
}
};
for (int i = 0; i != n; ++i)
{
std::cout << rand7() << " ";
}
std::cout << std::endl;
return 0;
}
算法:
7可以用3位的序列表示
使用rand(5)随机地用0或1填充每一位。 例如:调用rand(5)和
如果结果是1或2,则用0填充位 如果结果是4或5,则用1填充位 如果结果是3,则忽略并重新执行(拒绝)
这样,我们可以用0/1随机填充3位,从而得到1-7中的数字。
编辑:这似乎是最简单和最有效的答案,所以这里有一些代码:
public static int random_7() {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + random_5_output_2();
}
}
return returnValue;
}
private static int random_5_output_2() {
while (true) {
int flip = random_5();
if (flip < 3) {
return 0;
}
else if (flip > 3) {
return 1;
}
}
}
这里我们使用约定的rand(n) -> [0, n - 1]
从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。
然而,这样做是可能的。我们基本上有这样的分布:
这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。
事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。
因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得
p(x) = 5 / 35 = 1 / 7 for all x in [0, 6]
这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。
这为我们提供了以下python函数:
def rand_range_transform(rands):
"""
returns a uniform random number in [0, len(rands) - 1]
if all r in rands are independent random numbers from the same uniform distribution
"""
return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic
可以这样使用:
rand5 = lambda : random.randrange(5)
def rand7():
return rand_range_transform([rand5() for _ in range(7)])
如果我们调用rand7() 70000次,我们可以得到:
max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0: 10019
1: 10016
2: 10071
3: 10044
4: 9775
5: 10042
6: 10033
这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。
也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。
但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。
这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。
public class RandomUnif {
public static final int BASE_NUMBER = 5;
private static Random rand = new Random();
/** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
public static int randomBASE() {
return rand.nextInt(BASE_NUMBER);
}
/** returns uniform integer in the range 0..n-1 using randomBASE() */
public static int randomUnif(int n) {
int rand, factor;
if( n <= 1 ) return 0;
else if( n == BASE_NUMBER ) return randomBASE();
if( n < BASE_NUMBER ) {
factor = BASE_NUMBER / n;
do
rand = randomBASE() / factor;
while(rand >= n);
return rand;
} else {
factor = (n - 1) / BASE_NUMBER + 1;
do {
rand = factor * randomBASE() + randomUnif(factor);
} while(rand >= n);
return rand;
}
}
}
不是特别高效,但一般和紧凑。对基生成器的均值调用:
n calls
2 1.250
3 1.644
4 1.252
5 1.000
6 3.763
7 3.185
8 2.821
9 2.495
10 2.250
11 3.646
12 3.316
13 3.060
14 2.853
15 2.650
16 2.814
17 2.644
18 2.502
19 2.361
20 2.248
21 2.382
22 2.277
23 2.175
24 2.082
25 2.000
26 5.472
27 5.280
28 5.119
29 4.899
这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。
int rand7() {
int m = 1203068;
int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;
return (r > 0) ? r : rand7();
}