给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
function rand7() {
while (true) { //lowest base 5 random number > 7 reduces memory
int num = (rand5()-1)*5 + rand5()-1;
if (num < 21) // improves performance
return 1 + num%7;
}
}
Python代码:
from random import randint
def rand7():
while(True):
num = (randint(1, 5)-1)*5 + randint(1, 5)-1
if num < 21:
return 1 + num%7
100000次运行的测试分布:
>>> rnums = []
>>> for _ in range(100000):
rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}
其他回答
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。
从一个扩大浮动范围的链接来到这里。这个更有趣。而不是我是如何得出结论的,我突然想到,对于一个给定的随机整数生成函数f,以“基数”b(在这种情况下是4,我会告诉为什么),它可以展开如下:
(b^0 * f() + b^1 * f() + b^2 * f() .... b^p * f()) / (b^(p+1) - 1) * (b-1)
这将把随机生成器转换为FLOAT生成器。我将在这里定义2个参数b和p。虽然这里的“基数”是4,但b实际上可以是任何东西,它也可以是无理数等p,我称之为精度是你想要的浮点生成器的良好粒度的程度。可以把这看作是对rand7的每次调用对rand5的调用数。
但我意识到,如果你把b设为底数+1(在这种情况下是4+1 = 5),这是一个最佳点,你会得到均匀的分布。首先摆脱这个1-5生成器,它实际上是rand4() + 1:
function rand4(){
return Math.random() * 5 | 0;
}
为了达到这个目的,你可以用rand5()-1替换rand4
接下来是将rand4从整数生成器转换为浮点生成器
function toFloat(f,b,p){
b = b || 2;
p = p || 3;
return (Array.apply(null,Array(p))
.map(function(d,i){return f()})
.map(function(d,i){return Math.pow(b,i)*d})
.reduce(function(ac,d,i){return ac += d;}))
/
(
(Math.pow(b,p) - 1)
/(b-1)
)
}
这将把我写的第一个函数应用到一个给定的rand函数。试一试:
toFloat(rand4) //1.4285714285714286 base = 2, precision = 3
toFloat(rand4,3,4) //0.75 base = 3, precision = 4
toFloat(rand4,4,5) //3.7507331378299122 base = 4, precision = 5
toFloat(rand4,5,6) //0.2012288786482335 base = 5, precision =6
...
现在,您可以将这个浮动范围(0-4 include)转换为任何其他浮动范围,然后将其降级为整数。这里我们的底是4,因为我们处理的是rand4,因此b=5的值会给你一个均匀分布。当b增长超过4时,你将开始在分布中引入周期性间隙。我测试了从2到8的b值,每个值都有3000分,并与原生数学进行了比较。随机的javascript,在我看来甚至比本机本身更好:
http://jsfiddle.net/ibowankenobi/r57v432t/
对于上面的链接,单击分布顶部的“bin”按钮以减小分箱大小。最后一个图表是原生数学。随机的,第四个d=5是均匀的。
在你得到浮动范围后,要么与7相乘并抛出小数部分,要么与7相乘,减去0.5并四舍五入:
((toFloat(rand4,5,6)/4 * 7) | 0) + 1 ---> occasionally you'll get 8 with 1/4^6 probability.
Math.round((toFloat(rand4,5,6)/4 * 7) - 0.5) + 1 --> between 1 and 7
这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。
int rand7() {
int m = 1203068;
int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;
return (r > 0) ? r : rand7();
}
假设rand(n)在这里表示“从0到n-1均匀分布的随机整数”,下面是使用Python的randint的代码示例,它具有这种效果。它只使用randint(5)和常量来产生randint(7)的效果。其实有点傻
from random import randint
sum = 7
while sum >= 7:
first = randint(0,5)
toadd = 9999
while toadd>1:
toadd = randint(0,5)
if toadd:
sum = first+5
else:
sum = first
assert 7>sum>=0
print sum
为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)
它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:
def ranndomNo7():
import random
rand5 = random.randint(4) # Produces range: [0, 4]
rand7 = int(rand5 / 5 * 7) # /5, *7, +0.5 and floor()
return rand7
这不是很容易吗?