给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这是我想到的答案,但这些复杂的答案让我认为这是完全错误的/:))

import random

def rand5():
    return float(random.randint(0,5))

def rand7():
    random_val = rand5()
    return float(random.randint((random_val-random_val),7))

print rand7()

其他回答

def rand5():
    return random.randint(1,5)    #return random integers from 1 to 5

def rand7():
    rand = rand5()+rand5()-1
    if rand > 7:                  #if numbers > 7, call rand7() again
        return rand7()
    print rand%7 + 1

我想这将是最简单的解决方案,但到处都有人建议5*rand5() + rand5() - 5,如http://www.geeksforgeeks.org/generate-integer-from-1-to-7-with-equal-probability/。 有人能解释一下rand5()+rand5()-1有什么问题吗

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?

对于0-7的值,你有以下内容:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

从左到右,Rand5()有p(1) ={2/ 5,2 / 5,3 /5}。因此,如果我们补这些概率分布(~Rand5()),我们应该能够使用它来生成我们的数字。我稍后会给出解决方案。有人有什么想法吗?

R

如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。

最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。

然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。

这就给出了L(m)的值约为m (log5/log7)也就是。82米。

上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。

问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?

如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。

如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。

那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。

如果我们一直代入,我们得到:

T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m  = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m

因此

L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)

另一种说法是:

If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)

最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。

然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。

最坏的情况是我们只能找到k和s.t 5^m = kx7+s。

Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)

其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:

T7(5^m) = m (Log5/Log7)+e(m)

一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。

整个问题取决于5^m的7位数字对不同m值的分布。

我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。

rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。