给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

int rand7()
{
    return ( rand5() + (rand5()%3) );
}

rand5() -返回1-5之间的值 rand5()%3 -返回0-2之间的值 所以,当加起来时,总价值将在1-7之间

其他回答

这里允许作业题吗?

这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。

function rnd7() {
    do {
        r1 = rnd5() - 1;
        do {
            r2=rnd5() - 1;
        } while (r2 > 1);
        result = r2 * 5 + r1;
    } while (result > 6);
    return result + 1;
}

PHP解决方案

<?php
function random_5(){
    return rand(1,5);
}


function random_7(){
 $total = 0;

    for($i=0;$i<7;$i++){
        $total += random_5();
    }

    return ($total%7)+1; 
}

echo random_7();
?>

以下是我的回答:

static struct rand_buffer {
  unsigned v, count;
} buf2, buf3;

void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
  buf->v = buf->v * n + v;
  ++buf->count;
}

#define PUSH(n, v)  push (&buf##n, n, v)

int rand16 (void)
{
  int v = buf2.v & 0xf;
  buf2.v >>= 4;
  buf2.count -= 4;
  return v;
}

int rand9 (void)
{
  int v = buf3.v % 9;
  buf3.v /= 9;
  buf3.count -= 2;
  return v;
}

int rand7 (void)
{
  if (buf3.count >= 2) {
    int v = rand9 ();

    if (v < 7)
      return v % 7 + 1;

    PUSH (2, v - 7);
  }

  for (;;) {
    if (buf2.count >= 4) {
      int v = rand16 ();

      if (v < 14) {
        PUSH (2, v / 7);
        return v % 7 + 1;
      }

      PUSH (2, v - 14);
    }

    // Get a number between 0 & 25
    int v = 5 * (rand5 () - 1) + rand5 () - 1;

    if (v < 21) {
      PUSH (3, v / 7);
      return v % 7 + 1;
    }

    v -= 21;
    PUSH (2, v & 1);
    PUSH (2, v >> 1);
  }
}

它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。

这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。

假设0-4为均匀分布,0-6为均匀分布:

public class SevenFromFive
{
  public SevenFromFive()
  {
    // this outputs a uniform ditribution but for some reason including it 
    // screws up the output distribution
    // open question Why?
    this.fifth = new ProbabilityCondensor(5, b => {});
    this.eigth = new ProbabilityCondensor(8, AddEntropy);
  } 

  private static Random r = new Random();
  private static uint Rand5()
  {
    return (uint)r.Next(0,5);
  }

  private class ProbabilityCondensor
  {
    private readonly int samples;
    private int counter;
    private int store;
    private readonly Action<bool> output;

    public ProbabilityCondensor(int chanceOfTrueReciprocal,
      Action<bool> output)
    {
      this.output = output;
      this.samples = chanceOfTrueReciprocal - 1;  
    }

    public void Add(bool bit)
    {
      this.counter++;
      if (bit)
        this.store++;   
      if (counter == samples)
      {
        bool? e;
        if (store == 0)
          e = false;
        else if (store == 1)
          e = true;
        else
          e = null;// discard for now       
        counter = 0;
        store = 0;
        if (e.HasValue)
          output(e.Value);
      }
    }
  }

  ulong buffer = 0;
  const ulong Mask = 7UL;
  int bitsAvail = 0;
  private readonly ProbabilityCondensor fifth;
  private readonly ProbabilityCondensor eigth;

  private void AddEntropy(bool bit)
  {
    buffer <<= 1;
    if (bit)
      buffer |= 1;      
    bitsAvail++;
  }

  private void AddTwoBitsEntropy(uint u)
  {
    buffer <<= 2;
    buffer |= (u & 3UL);    
    bitsAvail += 2;
  }

  public uint Rand7()
  {
    uint selection;   
    do
    {
      while (bitsAvail < 3)
      {
        var x = Rand5();
        if (x < 4)
        {
          // put the two low order bits straight in
          AddTwoBitsEntropy(x);
          fifth.Add(false);
        }
        else
        { 
          fifth.Add(true);
        }
      }
      // read 3 bits
      selection = (uint)((buffer & Mask));
      bitsAvail -= 3;     
      buffer >>= 3;
      if (selection == 7)
        eigth.Add(true);
      else
        eigth.Add(false);
    }
    while (selection == 7);   
    return selection;
  }
}

每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。

调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42

通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018

这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。

我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。

产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。

编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)

int rand5()
{
    return (rand() % 5) + 1;
}

int rand25()
{ 
    return (5 * (rand5() - 1) + rand5());
}

int rand625()
{
    return (25 * (rand25() - 1) + rand25());
}

int rand7()
{
    return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}