给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这里允许作业题吗?

这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。

function rnd7() {
    do {
        r1 = rnd5() - 1;
        do {
            r2=rnd5() - 1;
        } while (r2 > 1);
        result = r2 * 5 + r1;
    } while (result > 6);
    return result + 1;
}

其他回答

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)

这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。

public class RandomUnif {

    public static final int BASE_NUMBER = 5;

    private static Random rand = new Random();

    /** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
    public static int randomBASE() {
        return rand.nextInt(BASE_NUMBER);
    }

    /** returns uniform integer in the range 0..n-1 using randomBASE() */
    public static int randomUnif(int n) {
        int rand, factor;
        if( n <= 1 ) return 0;
        else if( n == BASE_NUMBER ) return randomBASE();
        if( n < BASE_NUMBER ) {
            factor = BASE_NUMBER / n;
            do
                rand = randomBASE() / factor;
            while(rand >= n);
            return rand;
        } else {
            factor = (n - 1) / BASE_NUMBER + 1;
            do {
                rand = factor * randomBASE() + randomUnif(factor);
            } while(rand >= n);
            return rand;
        }
    }
}

不是特别高效,但一般和紧凑。对基生成器的均值调用:

 n  calls
 2  1.250 
 3  1.644 
 4  1.252 
 5  1.000 
 6  3.763 
 7  3.185 
 8  2.821 
 9  2.495 
10  2.250 
11  3.646 
12  3.316 
13  3.060 
14  2.853 
15  2.650 
16  2.814 
17  2.644 
18  2.502 
19  2.361 
20  2.248 
21  2.382 
22  2.277 
23  2.175 
24  2.082 
25  2.000 
26  5.472 
27  5.280 
28  5.119 
29  4.899 
rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。

这是我想到的答案,但这些复杂的答案让我认为这是完全错误的/:))

import random

def rand5():
    return float(random.randint(0,5))

def rand7():
    random_val = rand5()
    return float(random.randint((random_val-random_val),7))

print rand7()

这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:

// Returns 1-5
var rnd5 = function(){
   return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
  var map = [
     [ 1, 2, 3, 4, 5 ],
     [ 6, 7, 1, 2, 3 ],
     [ 4, 5, 6, 7, 1 ],
     [ 2, 3, 4, 5, 6 ],
     [ 7, 0, 0, 0, 0 ]
  ];
  var result = map[rnd5() - 1][rnd5() - 1];
  if (result > 0) {
    return result;
  }
  lastEdge++;
  if (lastEdge > 7 ) {
    lastEdge = 1;
  }
  return lastEdge;
};

// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;} 
console.log(results)

结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]

js小提琴