我必须在r中把一个向量分成n个相等大小的块,我找不到任何基函数来做这个。谷歌也没帮上什么忙。这是我目前想到的;

x <- 1:10
n <- 3
chunk <- function(x,n) split(x, factor(sort(rank(x)%%n)))
chunk(x,n)
$`0`
[1] 1 2 3

$`1`
[1] 4 5 6 7

$`2`
[1]  8  9 10

当前回答

简单的函数通过简单地使用索引来分割一个向量-不需要过于复杂

vsplit <- function(v, n) {
    l = length(v)
    r = l/n
    return(lapply(1:n, function(i) {
        s = max(1, round(r*(i-1))+1)
        e = min(l, round(r*i))
        return(v[s:e])
    }))
}

其他回答

我想出了这个解决方案:

require(magrittr)
create.chunks <- function(x, elements.per.chunk){
    # plain R version
    # split(x, rep(seq_along(x), each = elements.per.chunk)[seq_along(x)])
    # magrittr version - because that's what people use now
    x %>% seq_along %>% rep(., each = elements.per.chunk) %>% extract(seq_along(x)) %>% split(x, .) 
}
create.chunks(letters[1:10], 3)
$`1`
[1] "a" "b" "c"

$`2`
[1] "d" "e" "f"

$`3`
[1] "g" "h" "i"

$`4`
[1] "j"

关键是要使用seq(each = chunk.size)参数,以便使其工作。在前面的解决方案中,使用seq_along的作用类似于rank(x),但实际上能够使用重复的条目产生正确的结果。

我需要相同的函数,并且已经阅读了以前的解决方案,但是我还需要在最后有不平衡的块,即如果我有10个元素将它们分成3个向量,那么我的结果应该分别有3,3,4个元素的向量。所以我使用了下面的代码(为了可读性,我没有对代码进行优化,否则不需要有很多变量):

chunk <- function(x,n){
  numOfVectors <- floor(length(x)/n)
  elementsPerVector <- c(rep(n,numOfVectors-1),n+length(x) %% n)
  elemDistPerVector <- rep(1:numOfVectors,elementsPerVector)
  split(x,factor(elemDistPerVector))
}
set.seed(1)
x <- rnorm(10)
n <- 3
chunk(x,n)
$`1`
[1] -0.6264538  0.1836433 -0.8356286

$`2`
[1]  1.5952808  0.3295078 -0.8204684

$`3`
[1]  0.4874291  0.7383247  0.5757814 -0.3053884

不确定这是否回答了OP的问题,但我认为%%在这里可能有用

df # some data.frame
N_CHUNKS <- 10
I_VEC <- 1:nrow(df)
df_split <- split(df, sort(I_VEC %% N_CHUNKS))

它分成大小为⌊n/k⌋+1或⌊n/k⌋的块,并且不使用O(n log n)排序。

get_chunk_id<-function(n, k){
    r <- n %% k
    s <- n %/% k
    i<-seq_len(n)
    1 + ifelse (i <= r * (s+1), (i-1) %/% (s+1), r + ((i - r * (s+1)-1) %/% s))
}

split(1:10, get_chunk_id(10,3))

将d分成大小为20的块的一行代码:

split(d, ceiling(seq_along(d)/20))

更多细节:我认为你只需要seq_along(), split()和ceiling():

> d <- rpois(73,5)
> d
 [1]  3  1 11  4  1  2  3  2  4 10 10  2  7  4  6  6  2  1  1  2  3  8  3 10  7  4
[27]  3  4  4  1  1  7  2  4  6  0  5  7  4  6  8  4  7 12  4  6  8  4  2  7  6  5
[53]  4  5  4  5  5  8  7  7  7  6  2  4  3  3  8 11  6  6  1  8  4
> max <- 20
> x <- seq_along(d)
> d1 <- split(d, ceiling(x/max))
> d1
$`1`
 [1]  3  1 11  4  1  2  3  2  4 10 10  2  7  4  6  6  2  1  1  2

$`2`
 [1]  3  8  3 10  7  4  3  4  4  1  1  7  2  4  6  0  5  7  4  6

$`3`
 [1]  8  4  7 12  4  6  8  4  2  7  6  5  4  5  4  5  5  8  7  7

$`4`
 [1]  7  6  2  4  3  3  8 11  6  6  1  8  4