好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。
这是在c++中四舍五入到一个数字的倍数的正确方法吗?
我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:
int roundUp(int numToRound, int multiple)
{
if(multiple == 0)
{
return numToRound;
}
int roundDown = ( (int) (numToRound) / multiple) * multiple;
int roundUp = roundDown + multiple;
int roundCalc = roundUp;
return (roundCalc);
}
更新:
抱歉,我可能没把意思说清楚。下面是一些例子:
roundUp(7, 100)
//return 100
roundUp(117, 100)
//return 200
roundUp(477, 100)
//return 500
roundUp(1077, 100)
//return 1100
roundUp(52, 20)
//return 60
roundUp(74, 30)
//return 90
以下是我根据OP的建议和其他人给出的例子给出的解决方案。因为大多数人都在寻找它来处理负数,这个解决方案就是这样做的,而不使用任何特殊的功能,如腹肌等。
通过避免使用模数而使用除法,负数是一个自然的结果,尽管它是四舍五入。在计算出向下舍入的版本之后,它会执行所需的数学运算以向上舍入,或者向负方向舍入,或者向正方向舍入。
还要注意的是,没有使用特殊的函数来计算任何东西,所以这里有一个小的速度提升。
int RoundUp(int n, int multiple)
{
// prevent divide by 0 by returning n
if (multiple == 0) return n;
// calculate the rounded down version
int roundedDown = n / multiple * multiple;
// if the rounded version and original are the same, then return the original
if (roundedDown == n) return n;
// handle negative number and round up according to the sign
// NOTE: if n is < 0 then subtract the multiple, otherwise add it
return (n < 0) ? roundedDown - multiple : roundedDown + multiple;
}
我用的是:
template <class _Ty>
inline _Ty n_Align_Up(_Ty n_x, _Ty n_alignment)
{
assert(n_alignment > 0);
//n_x += (n_x >= 0)? n_alignment - 1 : 1 - n_alignment; // causes to round away from zero (greatest absolute value)
n_x += (n_x >= 0)? n_alignment - 1 : -1; // causes to round up (towards positive infinity)
//n_x += (_Ty(-(n_x >= 0)) & n_alignment) - 1; // the same as above, avoids branch and integer multiplication
//n_x += n_alignment - 1; // only works for positive numbers (fastest)
return n_x - n_x % n_alignment; // rounds negative towards zero
}
对于2的幂:
template <class _Ty>
bool b_Is_POT(_Ty n_x)
{
return !(n_x & (n_x - 1));
}
template <class _Ty>
inline _Ty n_Align_Up_POT(_Ty n_x, _Ty n_pot_alignment)
{
assert(n_pot_alignment > 0);
assert(b_Is_POT(n_pot_alignment)); // alignment must be power of two
-- n_pot_alignment;
return (n_x + n_pot_alignment) & ~n_pot_alignment; // rounds towards positive infinity (i.e. negative towards zero)
}
请注意,这两个负值都舍入到0(这意味着所有值都舍入到正无穷),它们都不依赖于有符号溢出(这在C/ c++中未定义)。
这给:
n_Align_Up(10, 100) = 100
n_Align_Up(110, 100) = 200
n_Align_Up(0, 100) = 0
n_Align_Up(-10, 100) = 0
n_Align_Up(-110, 100) = -100
n_Align_Up(-210, 100) = -200
n_Align_Up_POT(10, 128) = 128
n_Align_Up_POT(130, 128) = 256
n_Align_Up_POT(0, 128) = 0
n_Align_Up_POT(-10, 128) = 0
n_Align_Up_POT(-130, 128) = -128
n_Align_Up_POT(-260, 128) = -256
这是使用模板函数的现代c++方法,该模板函数适用于float, double, long, int和short(但不适用于long long和long double,因为使用了double值)。
#include <cmath>
#include <iostream>
template<typename T>
T roundMultiple( T value, T multiple )
{
if (multiple == 0) return value;
return static_cast<T>(std::round(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}
int main()
{
std::cout << roundMultiple(39298.0, 100.0) << std::endl;
std::cout << roundMultiple(20930.0f, 1000.0f) << std::endl;
std::cout << roundMultiple(287399, 10) << std::endl;
}
但是你可以很容易地通过模板专门化添加long long和long double的支持,如下所示:
template<>
long double roundMultiple<long double>( long double value, long double multiple)
{
if (multiple == 0.0l) return value;
return std::round(value/multiple)*multiple;
}
template<>
long long roundMultiple<long long>( long long value, long long multiple)
{
if (multiple == 0.0l) return value;
return static_cast<long long>(std::round(static_cast<long double>(value)/static_cast<long double>(multiple))*static_cast<long double>(multiple));
}
要创建向上舍入的函数,请使用std::ceil,而总是向下舍入的函数请使用std::floor。上面的例子是使用std::round进行舍入。
创建“round up”或更广为人知的“round ceiling”模板函数,如下所示:
template<typename T>
T roundCeilMultiple( T value, T multiple )
{
if (multiple == 0) return value;
return static_cast<T>(std::ceil(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}
创建“round down”或更广为人知的“round floor”模板函数,如下所示:
template<typename T>
T roundFloorMultiple( T value, T multiple )
{
if (multiple == 0) return value;
return static_cast<T>(std::floor(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}