我使用Python 2从ASCII编码的文本文件解析JSON。

当用json或simplejson加载这些文件时,我的所有字符串值都转换为Unicode对象而不是字符串对象。问题是,我必须将数据与一些只接受字符串对象的库一起使用。我不能更改库也不能更新它们。

是否有可能获得字符串对象而不是Unicode对象?

例子

>>> import json
>>> original_list = ['a', 'b']
>>> json_list = json.dumps(original_list)
>>> json_list
'["a", "b"]'
>>> new_list = json.loads(json_list)
>>> new_list
[u'a', u'b']  # I want these to be of type `str`, not `unicode`

(2017年一个简单而干净的解决方案是使用最新版本的Python——即Python 3和更高版本。)


当前回答

Mark (Amery)正确地指出:在JSON转储上使用PyYAML的反序列化器仅在只有ASCII时有效。至少是开箱即用。

关于PyYAML方法的两个简短评论:

永远不要对来自字段的数据使用yaml.load()。这是YAML的一个特性(!),可以执行隐藏在结构中的任意代码。 你也可以通过以下方法使它适用于非ASCII: Def to_utf8(加载器,节点): 返回loader.construct_scalar(节点).encode(“utf - 8”) yaml.add_constructor (u 'tag: yaml.org, 2002: str ', to_utf8)

但就性能而言,这与马克·艾默里的答案无法相提并论:

将一些深度嵌套的样本字典扔到这两个方法上,我得到了这个(与dt[j] = json.loads(json.dumps(m))的时间delta):

     dt[yaml.safe_load(json.dumps(m))] =~ 100 * dt[j]
     dt[byteify recursion(Mark Amery)] =~   5 * dt[j]

因此,反序列化(包括完全遍历树和编码)完全在基于c语言的JSON实现的数量级之内。我发现这非常快,而且在深度嵌套结构上比yaml加载更健壮。更少的安全错误,看yaml.load。

虽然我很喜欢一个指向c语言的转换器的指针,但byteify函数应该是默认答案。

如果JSON结构来自包含用户输入的字段,则尤其如此。因为这样你可能需要遍历你的结构——独立于你想要的内部数据结构(“unicode三明治”或字节字符串)。

Why?

Unicode正常化。给不知情的人:吃片止痛药,看看这篇文章。

所以使用byteify递归你一石二鸟:

从嵌套的JSON转储中获取字节串 让用户输入值正常化,这样你就可以在你的存储中找到东西。

在我的测试中,结果是将input.encode('utf-8')替换为unicodedata。normalize('NFC', input).encode('utf-8')甚至比没有NFC时还要快——但我猜这在很大程度上依赖于样本数据。

其他回答

我构建了这个递归施法者。它符合我的需要,我认为它是相对完整的。

def _parseJSON(self, obj):
    newobj = {}

    for key, value in obj.iteritems():
        key = str(key)

        if isinstance(value, dict):
            newobj[key] = self._parseJSON(value)
        elif isinstance(value, list):
            if key not in newobj:
                newobj[key] = []
                for i in value:
                    newobj[key].append(self._parseJSON(i))
        elif isinstance(value, unicode):
            val = str(value)
            if val.isdigit():
                val = int(val)
            else:
                try:
                    val = float(val)
                except ValueError:
                    val = str(val)
            newobj[key] = val

    return newobj

只需要像这样传递一个JSON对象:

obj = json.loads(content, parse_float=float, parse_int=int)
obj = _parseJSON(obj)

我把它作为一个类的私有成员,但您可以根据需要重新使用该方法。

你可以为json使用object_hook参数。要传入转换器的负载。你不需要在事后进行转换。json模块将始终只传递object_hook字典,并且它将递归地传递嵌套字典,因此您不必自己递归到嵌套字典。我不认为我会像Wells显示的那样将Unicode字符串转换为数字。如果它是Unicode字符串,它在JSON文件中被引用为字符串,所以它应该是字符串(或者文件是坏的)。

另外,我会尽量避免在unicode对象上做类似str(val)的事情。您应该使用带有有效编码的value.encode(encoding),这取决于外部库的期望。

举个例子:

def _decode_list(data):
    rv = []
    for item in data:
        if isinstance(item, unicode):
            item = item.encode('utf-8')
        elif isinstance(item, list):
            item = _decode_list(item)
        elif isinstance(item, dict):
            item = _decode_dict(item)
        rv.append(item)
    return rv

def _decode_dict(data):
    rv = {}
    for key, value in data.iteritems():
        if isinstance(key, unicode):
            key = key.encode('utf-8')
        if isinstance(value, unicode):
            value = value.encode('utf-8')
        elif isinstance(value, list):
            value = _decode_list(value)
        elif isinstance(value, dict):
            value = _decode_dict(value)
        rv[key] = value
    return rv

obj = json.loads(s, object_hook=_decode_dict)

虽然这里有一些很好的答案,但我最终使用PyYAML来解析我的JSON文件,因为它以str类型字符串而不是unicode类型给出键和值。因为JSON是YAML的一个子集,它工作得很好:

>>> import json
>>> import yaml
>>> list_org = ['a', 'b']
>>> list_dump = json.dumps(list_org)
>>> list_dump
'["a", "b"]'
>>> json.loads(list_dump)
[u'a', u'b']
>>> yaml.safe_load(list_dump)
['a', 'b']

笔记

但有一些事情需要注意:

I get string objects because all my entries are ASCII encoded. If I would use Unicode encoded entries, I would get them back as unicode objects — there is no conversion! You should (probably always) use PyYAML's safe_load function; if you use it to load JSON files, you don't need the "additional power" of the load function anyway. If you want a YAML parser that has more support for the 1.2 version of the spec (and correctly parses very low numbers) try Ruamel YAML: pip install ruamel.yaml and import ruamel.yaml as yaml was all I needed in my tests.

转换

如上所述,没有任何转换!如果你不能确定只处理ASCII值(而且大多数时候你不能确定),最好使用转换函数:

我现在用过几次Mark Amery的,效果很好,很容易使用。您还可以使用类似的函数作为object_hook,因为它可以提高大文件的性能。请参阅Mirec Miskuf稍复杂的回答。

下面是一个用C语言编写的递归编码器: https://github.com/axiros/nested_encode

与json.loads()相比,“平均”结构的性能开销约为10%。

python speed.py
  json loads            [0.16sec]: {u'a': [{u'b': [[1, 2, [u'\xd6ster..
  json loads + encoding [0.18sec]: {'a': [{'b': [[1, 2, ['\xc3\x96ster.
  time overhead in percent: 9%

使用这个测试结构:

import json, nested_encode, time

s = """
{
  "firstName": "Jos\\u0301",
  "lastName": "Smith",
  "isAlive": true,
  "age": 25,
  "address": {
    "streetAddress": "21 2nd Street",
    "city": "\\u00d6sterreich",
    "state": "NY",
    "postalCode": "10021-3100"
  },
  "phoneNumbers": [
    {
      "type": "home",
      "number": "212 555-1234"
    },
    {
      "type": "office",
      "number": "646 555-4567"
    }
  ],
  "children": [],
  "spouse": null,
  "a": [{"b": [[1, 2, ["\\u00d6sterreich"]]]}]
}
"""


t1 = time.time()
for i in xrange(10000):
    u = json.loads(s)
dt_json = time.time() - t1

t1 = time.time()
for i in xrange(10000):
    b = nested_encode.encode_nested(json.loads(s))
dt_json_enc = time.time() - t1

print "json loads            [%.2fsec]: %s..." % (dt_json, str(u)[:20])
print "json loads + encoding [%.2fsec]: %s..." % (dt_json_enc, str(b)[:20])

print "time overhead in percent: %i%%"  % (100 * (dt_json_enc - dt_json)/dt_json)

问题在于simplejson和json是两个不同的模块,至少在处理Unicode的方式上是这样。你在Python 2.6+中有json,它给你Unicode值,而simplejson返回字符串对象。

在您的环境中尝试easy_installing -ing simplejson,看看是否有效。对我来说确实如此。