我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

半径和“靠近”该半径的点的数量之间存在线性关系,因此他需要使用半径分布,这也使得半径r附近的数据点的数量与r成正比。

其他回答

朴素解不起作用的原因是它给了靠近圆中心的点更高的概率密度。换句话说,半径为r/2的圆被选中点的概率为r/2,但它的面积(点的数量)为*r^2/4。

因此,我们希望半径概率密度具有以下性质:

选择半径小于或等于给定r的概率必须与半径为r的圆的面积成正比(因为我们希望在点上有一个均匀的分布,面积越大意味着点越多)。

换句话说,我们希望在[0,r]之间选择半径的概率等于它在圆的总面积中所占的份额。圆的总面积是*R^2,半径为R的圆的面积是*R^2。因此,我们希望在[0,r]之间选择半径的概率为(pi*r^2)/(pi* r^2) = r^2/ r^2。

现在来算算:

The probability of choosing a radius between [0,r] is the integral of p(r) dr from 0 to r (that's just because we add all the probabilities of the smaller radii). Thus we want integral(p(r)dr) = r^2/R^2. We can clearly see that R^2 is a constant, so all we need to do is figure out which p(r), when integrated would give us something like r^2. The answer is clearly r * constant. integral(r * constant dr) = r^2/2 * constant. This has to be equal to r^2/R^2, therefore constant = 2/R^2. Thus you have the probability distribution p(r) = r * 2/R^2

Note: Another more intuitive way to think about the problem is to imagine that you are trying to give each circle of radius r a probability density equal to the proportion of the number of points it has on its circumference. Thus a circle which has radius r will have 2 * pi * r "points" on its circumference. The total number of points is pi * R^2. Thus you should give the circle r a probability equal to (2 * pi * r) / (pi * R^2) = 2 * r/R^2. This is much easier to understand and more intuitive, but it's not quite as mathematically sound.

我认为在这种情况下,使用极坐标是一种使问题复杂化的方法,如果你在一个边长为2R的正方形中随机选择点,然后选择点(x,y)使x^2+y^2<=R^2,这将会容易得多。

1)在-1和1之间随机选择一个X。

var X:Number = Math.random() * 2 - 1;

2)利用圆公式,在X和半径为1的情况下,计算Y的最大值和最小值:

var YMin:Number = -Math.sqrt(1 - X * X);
var YMax:Number = Math.sqrt(1 - X * X);

3)在这两个极端之间随机选择一个Y:

var Y:Number = Math.random() * (YMax - YMin) + YMin;

4)将您的位置和半径值合并到最终值中:

var finalX:Number = X * radius + pos.x;
var finalY:Number = Y * radois + pos.y;

半径和“靠近”该半径的点的数量之间存在线性关系,因此他需要使用半径分布,这也使得半径r附近的数据点的数量与r成正比。

Java解决方案和分发示例(2000分)

public void getRandomPointInCircle() {
    double t = 2 * Math.PI * Math.random();
    double r = Math.sqrt(Math.random());
    double x = r * Math.cos(t);
    double y = r * Math.sin(t);
    System.out.println(x);
    System.out.println(y);
}

基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe