我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

我曾经用过这个方法: 这可能是完全未优化的(即它使用了一个点数组,所以它不能用于大圆圈),但它提供了足够的随机分布。如果你愿意,你可以跳过矩阵的创建,直接绘制。方法是随机化矩形中落在圆内的所有点。

bool[,] getMatrix(System.Drawing.Rectangle r) {
    bool[,] matrix = new bool[r.Width, r.Height];
    return matrix;
}

void fillMatrix(ref bool[,] matrix, Vector center) {
    double radius = center.X;
    Random r = new Random();
    for (int y = 0; y < matrix.GetLength(0); y++) {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            double distance = (center - new Vector(x, y)).Length;
            if (distance < radius) {
                matrix[x, y] = r.NextDouble() > 0.5;
            }
        }
    }

}

private void drawMatrix(Vector centerPoint, double radius, bool[,] matrix) {
    var g = this.CreateGraphics();

    Bitmap pixel = new Bitmap(1,1);
    pixel.SetPixel(0, 0, Color.Black);

    for (int y = 0; y < matrix.GetLength(0); y++)
    {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            if (matrix[x, y]) {
                g.DrawImage(pixel, new PointF((float)(centerPoint.X - radius + x), (float)(centerPoint.Y - radius + y)));
            }
        }
    }

    g.Dispose();
}

private void button1_Click(object sender, EventArgs e)
{
    System.Drawing.Rectangle r = new System.Drawing.Rectangle(100,100,200,200);
    double radius = r.Width / 2;
    Vector center = new Vector(r.Left + radius, r.Top + radius);
    Vector normalizedCenter = new Vector(radius, radius);
    bool[,] matrix = getMatrix(r);
    fillMatrix(ref matrix, normalizedCenter);
    drawMatrix(center, radius, matrix);
}

其他回答

让我们像阿基米德那样处理这个问题。

我们如何在三角形ABC中均匀地生成一个点,其中|AB|=|BC|?让我们把它扩展到平行四边形ABCD。在ABCD中很容易均匀地生成点。我们均匀地选择AB上的X点和BC上的Y点并选择Z使XBYZ是一个平行四边形。为了在原始三角形中得到一个均匀选择的点,我们只需将ADC中出现的任何点沿AC折叠回ABC。

现在考虑一个圆。在极限情况下,我们可以把它想象成无穷多个等腰三角形ABC, B在原点,A和C在周长上,彼此逐渐接近。我们可以从这些三角形中选择一个角。所以我们现在需要通过在ABC条上选择一点来生成到中心的距离。同样,延伸到ABCD, D现在是圆中心半径的两倍。

使用上述方法可以很容易地在ABCD中选择一个随机点。在AB上随机选一个点,在BC上随机选一个点。Ie。在[0,R]上取一对随机数字x和y,给出离中心的距离。三角形是一条细条AB和BC本质上是平行的。所以Z点到原点的距离是x+y。如果x+y >r我们向下折叠。

这是R=1的完整算法。我希望你同意这很简单。它使用三角函数,但您可以保证它需要多长时间,以及需要多少次random()调用,这与拒绝抽样不同。

t = 2*pi*random()
u = random()+random()
r = if u>1 then 2-u else u
[r*cos(t), r*sin(t)]

这里是Mathematica。

f[] := Block[{u, t, r},
  u = Random[] + Random[];
  t = Random[] 2 Pi;
  r = If[u > 1, 2 - u, u];
  {r Cos[t], r Sin[t]}
]

ListPlot[Table[f[], {10000}], AspectRatio -> Automatic]

这可能会帮助那些对选择速度算法感兴趣的人;最快的方法是(可能?)拒绝抽样。

只需在单位正方形内生成一个点,并拒绝它,直到它在圆内。如(伪代码),

def sample(r=1):
    while True:
        x = random(-1, 1)
        y = random(-1, 1)
        if x*x + y*y <= 1:
            return (x, y) * r

虽然有时它可能运行不止一次或两次(而且它不是常量时间,也不适合并行执行),但它要快得多,因为它不使用像sin或cos这样复杂的公式。

你也可以用你的直觉。

圆的面积是*r^2

为r = 1

得到的面积是。让我们假设我们有某种函数f,它将N=10个点均匀分布在一个圆内。这个比值是10 /

现在我们把面积和点数翻倍

对于r=2和N=20

面积是4,比值是20/4或10/2。半径越大,比值就越小,因为它的增长是二次的,N是线性的。

为了解决这个问题,我们可以说

x = r^2
sqrt(x) = r

如果在极坐标下生成一个向量

length = random_0_1();
angle = random_0_2pi();

更多的点会落在中心周围。

length = sqrt(random_0_1());
angle = random_0_2pi();

长度不再是均匀分布的,但是向量现在是均匀分布的。

半径和“靠近”该半径的点的数量之间存在线性关系,因此他需要使用半径分布,这也使得半径r附近的数据点的数量与r成正比。

朴素解不起作用的原因是它给了靠近圆中心的点更高的概率密度。换句话说,半径为r/2的圆被选中点的概率为r/2,但它的面积(点的数量)为*r^2/4。

因此,我们希望半径概率密度具有以下性质:

选择半径小于或等于给定r的概率必须与半径为r的圆的面积成正比(因为我们希望在点上有一个均匀的分布,面积越大意味着点越多)。

换句话说,我们希望在[0,r]之间选择半径的概率等于它在圆的总面积中所占的份额。圆的总面积是*R^2,半径为R的圆的面积是*R^2。因此,我们希望在[0,r]之间选择半径的概率为(pi*r^2)/(pi* r^2) = r^2/ r^2。

现在来算算:

The probability of choosing a radius between [0,r] is the integral of p(r) dr from 0 to r (that's just because we add all the probabilities of the smaller radii). Thus we want integral(p(r)dr) = r^2/R^2. We can clearly see that R^2 is a constant, so all we need to do is figure out which p(r), when integrated would give us something like r^2. The answer is clearly r * constant. integral(r * constant dr) = r^2/2 * constant. This has to be equal to r^2/R^2, therefore constant = 2/R^2. Thus you have the probability distribution p(r) = r * 2/R^2

Note: Another more intuitive way to think about the problem is to imagine that you are trying to give each circle of radius r a probability density equal to the proportion of the number of points it has on its circumference. Thus a circle which has radius r will have 2 * pi * r "points" on its circumference. The total number of points is pi * R^2. Thus you should give the circle r a probability equal to (2 * pi * r) / (pi * R^2) = 2 * r/R^2. This is much easier to understand and more intuitive, but it's not quite as mathematically sound.