我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

我曾经用过这个方法: 这可能是完全未优化的(即它使用了一个点数组,所以它不能用于大圆圈),但它提供了足够的随机分布。如果你愿意,你可以跳过矩阵的创建,直接绘制。方法是随机化矩形中落在圆内的所有点。

bool[,] getMatrix(System.Drawing.Rectangle r) {
    bool[,] matrix = new bool[r.Width, r.Height];
    return matrix;
}

void fillMatrix(ref bool[,] matrix, Vector center) {
    double radius = center.X;
    Random r = new Random();
    for (int y = 0; y < matrix.GetLength(0); y++) {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            double distance = (center - new Vector(x, y)).Length;
            if (distance < radius) {
                matrix[x, y] = r.NextDouble() > 0.5;
            }
        }
    }

}

private void drawMatrix(Vector centerPoint, double radius, bool[,] matrix) {
    var g = this.CreateGraphics();

    Bitmap pixel = new Bitmap(1,1);
    pixel.SetPixel(0, 0, Color.Black);

    for (int y = 0; y < matrix.GetLength(0); y++)
    {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            if (matrix[x, y]) {
                g.DrawImage(pixel, new PointF((float)(centerPoint.X - radius + x), (float)(centerPoint.Y - radius + y)));
            }
        }
    }

    g.Dispose();
}

private void button1_Click(object sender, EventArgs e)
{
    System.Drawing.Rectangle r = new System.Drawing.Rectangle(100,100,200,200);
    double radius = r.Width / 2;
    Vector center = new Vector(r.Left + radius, r.Top + radius);
    Vector normalizedCenter = new Vector(radius, radius);
    bool[,] matrix = getMatrix(r);
    fillMatrix(ref matrix, normalizedCenter);
    drawMatrix(center, radius, matrix);
}

其他回答

这样想。如果你有一个矩形,其中一个轴是半径,一个是角,你取这个矩形内半径为0的点。它们都离原点很近(在圆上很近)然而,半径R附近的点,它们都落在圆的边缘附近(也就是说,彼此相距很远)。

这可能会让你知道为什么你会有这种行为。

在这个链接上导出的因子告诉你,矩形中有多少对应的区域需要调整,以便在映射到圆后不依赖于半径。

编辑:所以他在你分享的链接中写道,“通过计算累积分布的倒数,这很容易做到,我们得到r:”。

这里的基本前提是,通过将均匀分布映射为期望概率密度函数的累积分布函数的逆函数,可以从均匀分布创建一个具有期望分布的变量。为什么?现在把它当做理所当然,但这是事实。

这是我对数学的一些直观解释。密度函数f(r)关于r必须与r本身成比例。理解这个事实是任何微积分基础书的一部分。请参阅有关极区元素的部分。其他一些海报也提到了这一点。

我们记作f(r) = C*r;

这就是大部分的工作。现在,由于f(r)应该是一个概率密度,你可以很容易地看到,通过对f(r)在区间(0,r)上积分,你可以得到C = 2/ r ^2(这是给读者的练习)。

因此,f(r) = 2*r/ r ^2

好,这就是如何得到链接中的公式。

然后,最后一部分是从(0,1)中的均匀随机变量u你必须从这个期望密度f(r)映射到累积分布函数的逆函数。要理解为什么会这样,你可能需要找到像Papoulis这样的高级概率文本(或者自己推导)。

对f(r)积分得到f(r) = r^2/ r^2

为了求出它的反函数你设u = r^2/ r^2然后解出r,得到r = r *√(u)

直观上讲,u = 0映射到r = 0。同样,u = 1应该映射到r = r。同样,它通过平方根函数,这是有意义的,与链接匹配。

Java解决方案和分发示例(2000分)

public void getRandomPointInCircle() {
    double t = 2 * Math.PI * Math.random();
    double r = Math.sqrt(Math.random());
    double x = r * Math.cos(t);
    double y = r * Math.sin(t);
    System.out.println(x);
    System.out.println(y);
}

基于以前的解决方案https://stackoverflow.com/a/5838055/5224246从@sigfpe

下面是我的Python代码,从半径为rad的圆中生成num个随机点:

import matplotlib.pyplot as plt
import numpy as np
rad = 10
num = 1000

t = np.random.uniform(0.0, 2.0*np.pi, num)
r = rad * np.sqrt(np.random.uniform(0.0, 1.0, num))
x = r * np.cos(t)
y = r * np.sin(t)

plt.plot(x, y, "ro", ms=1)
plt.axis([-15, 15, -15, 15])
plt.show()

程序员解决方案:

创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        matrix[x][y] = true;

        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;

      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

位图仅用于解释逻辑。这是没有位图的代码:

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;
      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。

为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。

或者使用Mehrdad提出的蒙特卡罗方法。

EDIT

要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。

为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。