我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

这样想。如果你有一个矩形,其中一个轴是半径,一个是角,你取这个矩形内半径为0的点。它们都离原点很近(在圆上很近)然而,半径R附近的点,它们都落在圆的边缘附近(也就是说,彼此相距很远)。

这可能会让你知道为什么你会有这种行为。

在这个链接上导出的因子告诉你,矩形中有多少对应的区域需要调整,以便在映射到圆后不依赖于半径。

编辑:所以他在你分享的链接中写道,“通过计算累积分布的倒数,这很容易做到,我们得到r:”。

这里的基本前提是,通过将均匀分布映射为期望概率密度函数的累积分布函数的逆函数,可以从均匀分布创建一个具有期望分布的变量。为什么?现在把它当做理所当然,但这是事实。

这是我对数学的一些直观解释。密度函数f(r)关于r必须与r本身成比例。理解这个事实是任何微积分基础书的一部分。请参阅有关极区元素的部分。其他一些海报也提到了这一点。

我们记作f(r) = C*r;

这就是大部分的工作。现在,由于f(r)应该是一个概率密度,你可以很容易地看到,通过对f(r)在区间(0,r)上积分,你可以得到C = 2/ r ^2(这是给读者的练习)。

因此,f(r) = 2*r/ r ^2

好,这就是如何得到链接中的公式。

然后,最后一部分是从(0,1)中的均匀随机变量u你必须从这个期望密度f(r)映射到累积分布函数的逆函数。要理解为什么会这样,你可能需要找到像Papoulis这样的高级概率文本(或者自己推导)。

对f(r)积分得到f(r) = r^2/ r^2

为了求出它的反函数你设u = r^2/ r^2然后解出r,得到r = r *√(u)

直观上讲,u = 0映射到r = 0。同样,u = 1应该映射到r = r。同样,它通过平方根函数,这是有意义的,与链接匹配。

其他回答

圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。

为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。

或者使用Mehrdad提出的蒙特卡罗方法。

EDIT

要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。

为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。

程序员解决方案:

创建一个位图(布尔值的矩阵)。你想要多大就有多大。 在位图中画一个圆。 创建一个圆的点查找表。 在这个查找表中选择一个随机索引。

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

bool matrix[MATRIX_SIZE][MATRIX_SIZE] = {0};

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        matrix[x][y] = true;

        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;

      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

位图仅用于解释逻辑。这是没有位图的代码:

const int RADIUS = 64;
const int MATRIX_SIZE = RADIUS * 2;

struct Point { int x; int y; };

Point lookupTable[MATRIX_SIZE * MATRIX_SIZE];

void init()
{
  int numberOfOnBits = 0;

  for (int x = 0 ; x < MATRIX_SIZE ; ++x)
  {
    for (int y = 0 ; y < MATRIX_SIZE ; ++y)
    {
      if (x * x + y * y < RADIUS * RADIUS) 
      {
        loopUpTable[numberOfOnBits].x = x;
        loopUpTable[numberOfOnBits].y = y;

        ++numberOfOnBits;
      } // if
    } // for
  } // for
} // ()

Point choose()
{
  int randomIndex = randomInt(numberOfBits);

  return loopUpTable[randomIndex];
} // ()

下面是我的Python代码,从半径为rad的圆中生成num个随机点:

import matplotlib.pyplot as plt
import numpy as np
rad = 10
num = 1000

t = np.random.uniform(0.0, 2.0*np.pi, num)
r = rad * np.sqrt(np.random.uniform(0.0, 1.0, num))
x = r * np.cos(t)
y = r * np.sin(t)

plt.plot(x, y, "ro", ms=1)
plt.axis([-15, 15, -15, 15])
plt.show()

这样想。如果你有一个矩形,其中一个轴是半径,一个是角,你取这个矩形内半径为0的点。它们都离原点很近(在圆上很近)然而,半径R附近的点,它们都落在圆的边缘附近(也就是说,彼此相距很远)。

这可能会让你知道为什么你会有这种行为。

在这个链接上导出的因子告诉你,矩形中有多少对应的区域需要调整,以便在映射到圆后不依赖于半径。

编辑:所以他在你分享的链接中写道,“通过计算累积分布的倒数,这很容易做到,我们得到r:”。

这里的基本前提是,通过将均匀分布映射为期望概率密度函数的累积分布函数的逆函数,可以从均匀分布创建一个具有期望分布的变量。为什么?现在把它当做理所当然,但这是事实。

这是我对数学的一些直观解释。密度函数f(r)关于r必须与r本身成比例。理解这个事实是任何微积分基础书的一部分。请参阅有关极区元素的部分。其他一些海报也提到了这一点。

我们记作f(r) = C*r;

这就是大部分的工作。现在,由于f(r)应该是一个概率密度,你可以很容易地看到,通过对f(r)在区间(0,r)上积分,你可以得到C = 2/ r ^2(这是给读者的练习)。

因此,f(r) = 2*r/ r ^2

好,这就是如何得到链接中的公式。

然后,最后一部分是从(0,1)中的均匀随机变量u你必须从这个期望密度f(r)映射到累积分布函数的逆函数。要理解为什么会这样,你可能需要找到像Papoulis这样的高级概率文本(或者自己推导)。

对f(r)积分得到f(r) = r^2/ r^2

为了求出它的反函数你设u = r^2/ r^2然后解出r,得到r = r *√(u)

直观上讲,u = 0映射到r = 0。同样,u = 1应该映射到r = r。同样,它通过平方根函数,这是有意义的,与链接匹配。

设ρ(半径)和φ(方位角)是两个随机变量,对应于圆内任意一点的极坐标。如果这些点是均匀分布的,那么ρ和φ的分布函数是什么?

对于任意r: 0 < r < r,半径坐标ρ小于r的概率为

P[ρ < r] = P[点在半径r的圆内]= S1 / S0 =(r/ r)2

其中S1和S0分别是半径为r和r的圆的面积。 因此,CDF可表示为:

          0          if r<=0
  CDF =   (r/R)**2   if 0 < r <= R
          1          if r > R

和PDF格式:

PDF = d/dr(CDF) = 2 * (r/R**2) (0 < r <= R).

请注意,对于R=1随机变量根号(X),其中X在[0,1]上是一致的,有这个确切的CDF(因为P[根号(X) < y] = P[X < y**2] = y**2对于0 < y <= 1)。

φ在0 ~ 2*π范围内分布明显均匀。现在你可以创建随机极坐标,并使用三角方程将其转换为笛卡尔坐标:

x = ρ * cos(φ)
y = ρ * sin(φ)

忍不住要发布R=1的python代码。

from matplotlib import pyplot as plt
import numpy as np

rho = np.sqrt(np.random.uniform(0, 1, 5000))
phi = np.random.uniform(0, 2*np.pi, 5000)

x = rho * np.cos(phi)
y = rho * np.sin(phi)

plt.scatter(x, y, s = 4)

你会得到