我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

我更喜欢这个。timeit医生太令人困惑了。

from datetime import datetime 

start_time = datetime.now() 

# INSERT YOUR CODE 

time_elapsed = datetime.now() - start_time 

print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))

注意,这里没有进行任何格式化,我只是在打印输出中写入hh:mm:ss,以便可以解释time_elapsed

其他回答

基于https://stackoverflow.com/a/30024601/5095636,以下为无lambda版本,如flake8根据E731对lambda使用的警告:

from contextlib import contextmanager
from timeit import default_timer

@contextmanager
def elapsed_timer():
    start_time = default_timer()

    class _Timer():
      start = start_time
      end = default_timer()
      duration = end - start

    yield _Timer

    end_time = default_timer()
    _Timer.end = end_time
    _Timer.duration = end_time - start_time

测试:

from time import sleep

with elapsed_timer() as t:
    print("start:", t.start)
    sleep(1)
    print("end:", t.end)

t.start
t.end
t.duration

你可以使用timeit。

下面是一个示例,说明如何使用Python REPL测试naive_func,该函数接受参数:

>>> import timeit                                                                                         

>>> def naive_func(x):                                                                                    
...     a = 0                                                                                             
...     for i in range(a):                                                                                
...         a += i                                                                                        
...     return a                                                                                          

>>> def wrapper(func, *args, **kwargs):                                                                   
...     def wrapper():                                                                                    
...         return func(*args, **kwargs)                                                                  
...     return wrapper                                                                                    

>>> wrapped = wrapper(naive_func, 1_000)                                                                  

>>> timeit.timeit(wrapped, number=1_000_000)                                                              
0.4458435332577161  

若函数并没有任何参数,那个么就不需要包装函数。

(仅使用Ipython)您可以使用%timeit来测量平均处理时间:

def foo():
    print "hello"

然后:

%timeit foo()

结果如下:

10000 loops, best of 3: 27 µs per loop

print_elapsed_time函数如下

def print_elapsed_time(prefix=''):
    e_time = time.time()
    if not hasattr(print_elapsed_time, 's_time'):
        print_elapsed_time.s_time = e_time
    else:
        print(f'{prefix} elapsed time: {e_time - print_elapsed_time.s_time:.2f} sec')
        print_elapsed_time.s_time = e_time

用这种方式

print_elapsed_time()
.... heavy jobs ...
print_elapsed_time('after heavy jobs')
.... tons of jobs ...
print_elapsed_time('after tons of jobs')

结果是

after heavy jobs elapsed time: 0.39 sec
after tons of jobs elapsed time: 0.60 sec  

这个函数的优点和缺点是你不需要经过开始时间

您可以使用Benchmark Timer(免责声明:我是作者):

基准计时器使用BenchmarkTimer类来测量执行某段代码所需的时间。这比内置的timeit函数具有更大的灵活性,并且与其他代码在相同的范围内运行。安装pip安装git+https://github.com/michaelitvin/benchmark-timer.git@main#egg=基准计时器用法单次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MySimpleCode”)作为tm,tm.single_ieration():睡眠时间(.3)输出:正在对标MySimpleCode。。。MySimpleCode基准:n_iters=1 avg=0.300881s std=0.000000s range=[0.3000881s ~ 0.300881s]多次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MyTimedCode”,print_iters=True)作为tm:对于tm迭代中的timing_iteration(n=5,预热=2):定时重复:睡眠时间(.1)打印(“\n===============\n”)print(“定时列表:”,列表(tm.timenings.values()))输出:正在对标MyTimedCode。。。[MyTimedCode]iter=0耗时0.099755s(预热)[MyTimedCode]iter=1耗时0.100476秒(预热)[MyTimedCode]iter=2耗时0.100189秒[MyTimedCode]iter=3耗时0.099900s[MyTimedCode]iter=4耗时0.100888秒MyTimedCode基准:n_iters=3 avg=0.100326s std=0.000414s range=[0.099900s ~ 0.100888s]===================时间列表:[0.1001885000000001,0.09990049999999995,0.10088760000000008]