假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

如果使用数组来支持二叉树,则可以用代数方法确定下一个节点。如果I是一个节点,那么它的子节点可以在2i + 1(左节点)和2i + 2(右节点)处找到。节点的下一个邻居由i + 1给出,除非i是2的幂

下面是在数组支持的二叉搜索树上实现宽度优先搜索的伪代码。这假设一个固定大小的数组,因此一个固定深度的树。它将查看无父节点,并可能创建难以管理的大堆栈。

bintree-bfs(bintree, elt, i)
    if (i == LENGTH)
        return false

    else if (bintree[i] == elt)
        return true

    else 
        return bintree-bfs(bintree, elt, i+1)        

其他回答

以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。

public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }

#include <bits/stdc++.h>
using namespace std;
#define Max 1000

vector <int> adj[Max];
bool visited[Max];

void bfs_recursion_utils(queue<int>& Q) {
    while(!Q.empty()) {
        int u = Q.front();
        visited[u] = true;
        cout << u << endl;
        Q.pop();
        for(int i = 0; i < (int)adj[u].size(); ++i) {
            int v = adj[u][i];
            if(!visited[v])
                Q.push(v), visited[v] = true;
        }
        bfs_recursion_utils(Q);
    }
}

void bfs_recursion(int source, queue <int>& Q) {
    memset(visited, false, sizeof visited);
    Q.push(source);
    bfs_recursion_utils(Q);
}

int main(void) {
    queue <int> Q;
    adj[1].push_back(2);
    adj[1].push_back(3);
    adj[1].push_back(4);

    adj[2].push_back(5);
    adj[2].push_back(6);

    adj[3].push_back(7);

    bfs_recursion(1, Q);
    return 0;
}

Java中简单的BFS和DFS递归: 只需要在堆栈/队列中推送/提供树的根节点并调用这些函数。

public static void breadthFirstSearch(Queue queue) {

    if (queue.isEmpty())
        return;

    Node node = (Node) queue.poll();

    System.out.println(node + " ");

    if (node.right != null)
        queue.offer(node.right);

    if (node.left != null)
        queue.offer(node.left);

    breadthFirstSearch(queue);
}

public static void depthFirstSearch(Stack stack) {

    if (stack.isEmpty())
        return;

    Node node = (Node) stack.pop();

    System.out.println(node + " ");

    if (node.right != null)
        stack.push(node.right);

    if (node.left != null)
        stack.push(node.left);

    depthFirstSearch(stack);
}

c#实现的递归宽度优先搜索二叉树算法。

二叉树数据可视化

IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
    {"A", new [] {"B", "C"}},
    {"B", new [] {"D", "E"}},
    {"C", new [] {"F", "G"}},
    {"E", new [] {"H"}}
};

void Main()
{
    var pathFound = BreadthFirstSearch("A", "H", new string[0]);
    Console.WriteLine(pathFound); // [A, B, E, H]

    var pathNotFound = BreadthFirstSearch("A", "Z", new string[0]);
    Console.WriteLine(pathNotFound); // []
}

IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path)
{
    if (start == end)
    {
        return path.Concat(new[] { end });
    }

    if (!graph.ContainsKey(start)) { return new string[0]; }    

    return graph[start].SelectMany(letter => BreadthFirstSearch(letter, end, path.Concat(new[] { start })));
}

如果你想让算法不仅适用于二叉树,而且适用于有两个或两个以上节点指向同一个节点的图,你必须通过持有已经访问过的节点列表来避免自循环。实现可能是这样的。

图形数据可视化

IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
    {"A", new [] {"B", "C"}},
    {"B", new [] {"D", "E"}},
    {"C", new [] {"F", "G", "E"}},
    {"E", new [] {"H"}}
};

void Main()
{
    var pathFound = BreadthFirstSearch("A", "H", new string[0], new List<string>());
    Console.WriteLine(pathFound); // [A, B, E, H]

    var pathNotFound = BreadthFirstSearch("A", "Z", new string[0], new List<string>());
    Console.WriteLine(pathNotFound); // []
}

IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path, IList<string> visited)
{
    if (start == end)
    {
        return path.Concat(new[] { end });
    }

    if (!graph.ContainsKey(start)) { return new string[0]; }


    return graph[start].Aggregate(new string[0], (acc, letter) =>
    {
        if (visited.Contains(letter))
        {
            return acc;
        }

        visited.Add(letter);

        var result = BreadthFirstSearch(letter, end, path.Concat(new[] { start }), visited);
        return acc.Concat(result).ToArray();
    });
}

如果使用数组来支持二叉树,则可以用代数方法确定下一个节点。如果I是一个节点,那么它的子节点可以在2i + 1(左节点)和2i + 2(右节点)处找到。节点的下一个邻居由i + 1给出,除非i是2的幂

下面是在数组支持的二叉搜索树上实现宽度优先搜索的伪代码。这假设一个固定大小的数组,因此一个固定深度的树。它将查看无父节点,并可能创建难以管理的大堆栈。

bintree-bfs(bintree, elt, i)
    if (i == LENGTH)
        return false

    else if (bintree[i] == elt)
        return true

    else 
        return bintree-bfs(bintree, elt, i+1)