假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

我认为这可以使用指针来完成,而不使用任何队列。

基本上我们在任何地方都维护两个指针,一个指向父结点,另一个指向待处理的子结点(链接列表指向所有已处理的子结点)

现在你只需分配子进程的指针&当父进程处理完成时,你只需让子进程成为父进程进行下一层的处理

以下是我的代码:

//Tree Node
struct Node {
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
    

/ / Algorightm:

    void LevelTraverse(Node* parent,Node* chidstart,Node* childend ){
        if(!parent && !chidstart) return;  // we processed everything
        
        if(!parent && chidstart){ //finished processing last level
            parent=chidstart;chidstart=childend=NULL; // assgin child to parent for processing next level
            LevelTraverse(parent,chidstart,childend);
        }else if(parent && !chidstart){ // This is new level first node tobe processed
            Node* temp=parent; parent=parent->next;
            if(temp->left) { childend=chidstart=temp->left; }
            if(chidstart){
                if(temp->right) { childend->next=temp->right; childend=temp->right; }
            }else{
                if(temp->right) { childend=chidstart=temp->right; }
            }
            LevelTraverse(parent,chidstart,childend);
        }else if(parent && chidstart){ //we are in mid of some level processing
            Node* temp=parent; parent=parent->next;
            if(temp->left) { childend->next=temp->left; childend=temp->left; }
            if(temp->right) { childend->next=temp->right; childend=temp->right; }
            LevelTraverse(parent,chidstart,childend);
        }
    }

//驱动代码:

    Node* connect(Node* root) {
        if(!root) return NULL;
        Node* parent; Node* childs, *childe; parent=childs=childe=NULL;
        parent=root;
        LevelTraverse(parent, childs, childe);
        return root;
    }

其他回答

(我假设这只是某种思维练习,或者甚至是一个恶作剧的家庭作业/面试问题,但是我想我可以想象一些奇怪的场景,由于某种原因不允许有任何堆空间[一些非常糟糕的自定义内存管理器?一些奇怪的运行时/操作系统问题?当你仍然可以访问堆栈时…)

宽度优先遍历传统上使用队列,而不是堆栈。队列和堆栈的性质几乎是相反的,因此试图使用调用堆栈(这是一个堆栈,因此得名)作为辅助存储(队列)几乎是注定要失败的,除非您对调用堆栈做了一些不应该做的愚蠢可笑的事情。

同样,您尝试实现的任何非尾递归本质上都是向算法添加堆栈。这使得它不再在二叉树上进行广度优先搜索,因此传统BFS的运行时和诸如此类的东西不再完全适用。当然,您总是可以简单地将任何循环转换为递归调用,但这并不是任何有意义的递归。

However, there are ways, as demonstrated by others, to implement something that follows the semantics of BFS at some cost. If the cost of comparison is expensive but node traversal is cheap, then as @Simon Buchan did, you can simply run an iterative depth-first search, only processing the leaves. This would mean no growing queue stored in the heap, just a local depth variable, and stacks being built up over and over on the call stack as the tree is traversed over and over again. And as @Patrick noted, a binary tree backed by an array is typically stored in breadth-first traversal order anyway, so a breadth-first search on that would be trivial, also without needing an auxiliary queue.

我发现了一个非常漂亮的递归(甚至函数)宽度优先遍历相关算法。不是我的想法,但我认为在这个话题中应该提到它。

Chris Okasaki在http://okasaki.blogspot.de/2008/07/breadth-first-numbering-algorithm-in.html上用3张图片非常清楚地解释了他的ICFP 2000的宽度优先编号算法。

Debasish Ghosh的Scala实现,我在http://debasishg.blogspot.de/2008/09/breadth-first-numbering-okasakis.html找到的,是:

trait Tree[+T]
case class Node[+T](data: T, left: Tree[T], right: Tree[T]) extends Tree[T]
case object E extends Tree[Nothing]

def bfsNumForest[T](i: Int, trees: Queue[Tree[T]]): Queue[Tree[Int]] = {
  if (trees.isEmpty) Queue.Empty
  else {
    trees.dequeue match {
      case (E, ts) =>
        bfsNumForest(i, ts).enqueue[Tree[Int]](E)
      case (Node(d, l, r), ts) =>
        val q = ts.enqueue(l, r)
        val qq = bfsNumForest(i+1, q)
        val (bb, qqq) = qq.dequeue
        val (aa, tss) = qqq.dequeue
        tss.enqueue[org.dg.collection.BFSNumber.Tree[Int]](Node(i, aa, bb))
    }
  }
}

def bfsNumTree[T](t: Tree[T]): Tree[Int] = {
  val q = Queue.Empty.enqueue[Tree[T]](t)
  val qq = bfsNumForest(1, q)
  qq.dequeue._1
}

设v为起始顶点

设G是问题中的图

下面是不使用队列的伪代码

Initially label v as visited as you start from v
BFS(G,v)
    for all adjacent vertices w of v in G:
        if vertex w is not visited:
            label w as visited
    for all adjacent vertices w of v in G:
        recursively call BFS(G,w)
#include <bits/stdc++.h>
using namespace std;
#define Max 1000

vector <int> adj[Max];
bool visited[Max];

void bfs_recursion_utils(queue<int>& Q) {
    while(!Q.empty()) {
        int u = Q.front();
        visited[u] = true;
        cout << u << endl;
        Q.pop();
        for(int i = 0; i < (int)adj[u].size(); ++i) {
            int v = adj[u][i];
            if(!visited[v])
                Q.push(v), visited[v] = true;
        }
        bfs_recursion_utils(Q);
    }
}

void bfs_recursion(int source, queue <int>& Q) {
    memset(visited, false, sizeof visited);
    Q.push(source);
    bfs_recursion_utils(Q);
}

int main(void) {
    queue <int> Q;
    adj[1].push_back(2);
    adj[1].push_back(3);
    adj[1].push_back(4);

    adj[2].push_back(5);
    adj[2].push_back(6);

    adj[3].push_back(7);

    bfs_recursion(1, Q);
    return 0;
}

二进制(或n-ary)树的BFS可以在没有队列的情况下递归完成,如下所示(在Java中):

public class BreathFirst {

    static class Node {
        Node(int value) {
            this(value, 0);
        }
        Node(int value, int nChildren) {
            this.value = value;
            this.children = new Node[nChildren];
        }
        int value;
        Node[] children;
    }

    static void breathFirst(Node root, Consumer<? super Node> printer) {
        boolean keepGoing = true;
        for (int level = 0; keepGoing; level++) {
            keepGoing = breathFirst(root, printer, level);
        }
    }

    static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
        if (depth < 0 || node == null) return false;
        if (depth == 0) {
            printer.accept(node);
            return true;
        }
        boolean any = false;
        for (final Node child : node.children) {
            any |= breathFirst(child, printer, depth - 1);
        }
        return any;
    }
}

按升序遍历打印数字1-12的示例:

public static void main(String... args) {
    //            1
    //          / | \
    //        2   3   4
    //      / |       | \
    //    5   6       7  8
    //  / |           | \
    // 9  10         11  12

    Node root = new Node(1, 3);
    root.children[0] = new Node(2, 2);
    root.children[1] = new Node(3);
    root.children[2] = new Node(4, 2);
    root.children[0].children[0] = new Node(5, 2);
    root.children[0].children[1] = new Node(6);
    root.children[2].children[0] = new Node(7, 2);
    root.children[2].children[1] = new Node(8);
    root.children[0].children[0].children[0] = new Node(9);
    root.children[0].children[0].children[1] = new Node(10);
    root.children[2].children[0].children[0] = new Node(11);
    root.children[2].children[0].children[1] = new Node(12);

    breathFirst(root, n -> System.out.println(n.value));
}