如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

我的方法:

从OBB /矩形上/中的圆计算closest_point (最近点将位于边缘/角落或内部) 计算从closest_point到圆心的squared_distance (距离的平方避免了平方根) 返回squared_distance <=圆半径的平方

其他回答

以下是我的做法:

bool intersects(CircleType circle, RectType rect)
{
    circleDistance.x = abs(circle.x - rect.x);
    circleDistance.y = abs(circle.y - rect.y);

    if (circleDistance.x > (rect.width/2 + circle.r)) { return false; }
    if (circleDistance.y > (rect.height/2 + circle.r)) { return false; }

    if (circleDistance.x <= (rect.width/2)) { return true; } 
    if (circleDistance.y <= (rect.height/2)) { return true; }

    cornerDistance_sq = (circleDistance.x - rect.width/2)^2 +
                         (circleDistance.y - rect.height/2)^2;

    return (cornerDistance_sq <= (circle.r^2));
}

下面是它的工作原理:

The first pair of lines calculate the absolute values of the x and y difference between the center of the circle and the center of the rectangle. This collapses the four quadrants down into one, so that the calculations do not have to be done four times. The image shows the area in which the center of the circle must now lie. Note that only the single quadrant is shown. The rectangle is the grey area, and the red border outlines the critical area which is exactly one radius away from the edges of the rectangle. The center of the circle has to be within this red border for the intersection to occur. The second pair of lines eliminate the easy cases where the circle is far enough away from the rectangle (in either direction) that no intersection is possible. This corresponds to the green area in the image. The third pair of lines handle the easy cases where the circle is close enough to the rectangle (in either direction) that an intersection is guaranteed. This corresponds to the orange and grey sections in the image. Note that this step must be done after step 2 for the logic to make sense. The remaining lines calculate the difficult case where the circle may intersect the corner of the rectangle. To solve, compute the distance from the center of the circle and the corner, and then verify that the distance is not more than the radius of the circle. This calculation returns false for all circles whose center is within the red shaded area and returns true for all circles whose center is within the white shaded area.

圆与矩形相交只有两种情况:

圆的中心在矩形的内部,或者 矩形的一条边在圆上有一个点。

注意,这并不要求矩形与轴平行。

(一种方法是:如果没有一条边在圆中有点(如果所有的边都完全“在”圆外),那么圆仍然可以与多边形相交的唯一方法是它完全位于多边形内部。)

有了这样的见解,就可以像下面这样工作,其中圆的中心是P,半径是R,矩形的顶点是A, B, C, D(不完整的代码):

def intersect(Circle(P, R), Rectangle(A, B, C, D)):
    S = Circle(P, R)
    return (pointInRectangle(P, Rectangle(A, B, C, D)) or
            intersectCircle(S, (A, B)) or
            intersectCircle(S, (B, C)) or
            intersectCircle(S, (C, D)) or
            intersectCircle(S, (D, A)))

如果你在写任何几何,你的库中可能已经有了上面的函数。否则,pointInRectangle()可以用几种方式实现;任何一般的多边形点方法都可以工作,但对于矩形,你可以检查这是否有效:

0 ≤ AP·AB ≤ AB·AB and 0 ≤ AP·AD ≤ AD·AD

intersectCircle()也很容易实现:一种方法是检查从P到直线的垂线的脚是否足够近并且在端点之间,否则检查端点。

最酷的是,同样的想法不仅适用于矩形,而且适用于一个圆与任何简单多边形的交点——甚至不必是凸多边形!

我在制作这款游戏时开发了这个算法:https://mshwf.github.io/mates/

如果圆与正方形接触,那么圆的中心线与正方形中心线之间的距离应该等于(直径+边)/2。 让我们有一个名为touching的变量来保存这个距离。问题是:我应该考虑哪条中心线:水平的还是垂直的? 考虑这个框架:

每条中心线给出了不同的距离,只有一条是没有碰撞的正确指示,但利用人类的直觉是理解自然算法如何工作的开始。

They are not touching, which means that the distance between the two centerlines should be greater than touching, which means that the natural algorithm picks the horizontal centerlines (the vertical centerlines says there's a collision!). By noticing multiple circles, you can tell: if the circle intersects with the vertical extension of the square, then we pick the vertical distance (between the horizontal centerlines), and if the circle intersects with the horizontal extension, we pick the horizontal distance:

另一个例子,圆4:它与正方形的水平延伸相交,那么我们考虑水平距离等于接触。

Ok, the tough part is demystified, now we know how the algorithm will work, but how we know with which extension the circle intersects? It's easy actually: we calculate the distance between the most right x and the most left x (of both the circle and the square), and the same for the y-axis, the one with greater value is the axis with the extension that intersects with the circle (if it's greater than diameter+side then the circle is outside the two square extensions, like circle #7). The code looks like:

right = Math.max(square.x+square.side, circle.x+circle.rad);
left = Math.min(square.x, circle.x-circle.rad);

bottom = Math.max(square.y+square.side, circle.y+circle.rad);
top = Math.min(square.y, circle.y-circle.rad);

if (right - left > down - top) {
 //compare with horizontal distance
}
else {
 //compare with vertical distance
}

/*These equations assume that the reference point of the square is at its top left corner, and the reference point of the circle is at its center*/

为了可视化,拿你的键盘的numpad。如果键“5”代表你的矩形,那么所有的键1-9代表空间的9个象限除以构成矩形的线(5是里面的线)。

1)如果圆的中心在象限5(即在矩形内),则两个形状相交。

这里有两种可能的情况: a)圆与矩形的两条或多条相邻边相交。 b)圆与矩形的一条边相交。

第一种情况很简单。如果圆与矩形的两条相邻边相交,则它必须包含连接这两条边的角。(或者说它的中心在象限5,我们已经讲过了。还要注意,圆只与矩形的两条相对边相交的情况也被覆盖了。)

2)如果矩形的任意角A、B、C、D在圆内,则这两个形状相交。

第二种情况比较棘手。我们应该注意到,只有当圆的中心位于2、4、6或8象限中的一个象限时,才会发生这种情况。(事实上,如果中心在1、3、7、8象限中的任何一个象限上,则相应的角将是离它最近的点。)

现在我们有了圆的中心在一个“边”象限内的情况,它只与相应的边相交。那么,边缘上最接近圆中心的点必须在圆内。

3)对于每条直线AB, BC, CD, DA,构造经过圆中心p的垂直线p(AB, p), p(BC, p), p(CD, p), p(DA, p),对于每条垂直线,如果与原边的交点在圆内,则两个图形相交。

最后一步有一个捷径。如果圆的圆心在象限8,边AB是上边,交点的y坐标是A和B, x坐标是P。

你可以构造四条线的交点并检查它们是否在相应的边上,或者找出P在哪个象限并检查相应的交点。两者都应该化简为相同的布尔方程。要注意的是,上面的步骤2并没有排除P位于“角落”象限之一;它只是在寻找一个十字路口。

编辑:事实证明,我忽略了一个简单的事实,即#2是#3的子情况。毕竟,角也是边缘上的点。请看下面@ShreevatsaR的回答,你会得到很好的解释。与此同时,忘记上面的第二条,除非你想要一个快速但冗余的检查。

首先检查矩形和与圆相切的正方形是否重叠(简单)。如果它们不重叠,就不会碰撞。 检查圆的中心是否在矩形内(简单)。如果它在里面,它们就会碰撞。 计算矩形边到圆中心的最小平方距离(略硬)。如果小于半径的平方,它们就会碰撞,否则不会。

它是有效的,因为:

首先,它用一个便宜的算法检查最常见的场景,当它确定它们没有碰撞时,它就结束了。 然后它用一个廉价的算法检查下一个最常见的场景(不要计算平方根,使用平方值),当它确定它们碰撞时,它就结束了。 然后它执行更昂贵的算法来检查与矩形边框的碰撞。