如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

球面和矩形相交于IIF 圆心和矩形的一个顶点之间的距离小于球体的半径 或 圆心与矩形的一条边之间的距离小于球面的半径([点线距离]) 或 圆的中心在矩形的内部 一点上距离:

P1 = [x1,y1]
P2 = [x2,y2]
Distance = sqrt(abs(x1 - x2)+abs(y1-y2))

点线路距离:

L1 = [x1,y1],L2 = [x2,y2] (two points of your line, ie the vertex points)
P1 = [px,py] some point

Distance d =  abs( (x2-x1)(y1-py)-(x1-px)(y2-y1) ) / Distance(L1,L2)

矩形内圆中心: 采用分离轴的方法:如果存在一个投影到一条直线上,将矩形与点分开,它们就不相交

您将点投影在平行于矩形边的直线上,然后可以很容易地确定它们是否相交。如果它们不在所有4个投影上相交,它们(点和矩形)就不能相交。

你只需要内积(x= [x1,x2],y = [y1,y2],x *y = x1*y1 + x2*y2)

你的测试应该是这样的:

//rectangle edges: TL (top left), TR (top right), BL (bottom left), BR (bottom right)
//point to test: POI

seperated = false
for egde in { {TL,TR}, {BL,BR}, {TL,BL},{TR-BR} }:  // the edges
    D = edge[0] - edge[1]
    innerProd =  D * POI
    Interval_min = min(D*edge[0],D*edge[1])
    Interval_max = max(D*edge[0],D*edge[1])
    if not (  Interval_min ≤ innerProd ≤  Interval_max ) 
           seperated = true
           break  // end for loop 
    end if
end for
if (seperated is true)    
      return "no intersection"
else 
      return "intersection"
end if

它没有假设一个轴对齐的矩形,并且很容易扩展用于测试凸集之间的交集。

其他回答

假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

对于那些需要用SQL在地理坐标中计算圆/矩形碰撞的人, 这是我在oracle 11中实现的e.James建议算法。

在输入中,它需要圆坐标,圆半径km和矩形的两个顶点坐标:

CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
    circleCenterLat     IN NUMBER,      -- circle Center Latitude
    circleCenterLon     IN NUMBER,      -- circle Center Longitude
    circleRadius        IN NUMBER,      -- circle Radius in KM
    rectSWLat           IN NUMBER,      -- rectangle South West Latitude
    rectSWLon           IN NUMBER,      -- rectangle South West Longitude
    rectNELat           IN NUMBER,      -- rectangle North Est Latitude
    rectNELon           IN NUMBER       -- rectangle North Est Longitude
)
RETURN NUMBER
AS
    -- converts km to degrees (use 69 if miles)
    kmToDegreeConst     NUMBER := 111.045;

    -- Remaining rectangle vertices 
    rectNWLat   NUMBER;
    rectNWLon   NUMBER;
    rectSELat   NUMBER;
    rectSELon   NUMBER;

    rectHeight  NUMBER;
    rectWIdth   NUMBER;

    circleDistanceLat   NUMBER;
    circleDistanceLon   NUMBER;
    cornerDistanceSQ    NUMBER;

BEGIN
    -- Initialization of remaining rectangle vertices  
    rectNWLat := rectNELat;
    rectNWLon := rectSWLon;
    rectSELat := rectSWLat;
    rectSELon := rectNELon;

    -- Rectangle sides length calculation
    rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
    rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);

    circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
    circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );

    IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLon <= (rectWidth/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat <= (rectHeight/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;


    cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);

    IF cornerDistanceSQ <=  POWER(circleRadius, 2) THEN
        RETURN 0;  --  -1 => NO Collision ; 0 => Collision Detected
    ELSE
        RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
END;    

圆与矩形相交只有两种情况:

圆的中心在矩形的内部,或者 矩形的一条边在圆上有一个点。

注意,这并不要求矩形与轴平行。

(一种方法是:如果没有一条边在圆中有点(如果所有的边都完全“在”圆外),那么圆仍然可以与多边形相交的唯一方法是它完全位于多边形内部。)

有了这样的见解,就可以像下面这样工作,其中圆的中心是P,半径是R,矩形的顶点是A, B, C, D(不完整的代码):

def intersect(Circle(P, R), Rectangle(A, B, C, D)):
    S = Circle(P, R)
    return (pointInRectangle(P, Rectangle(A, B, C, D)) or
            intersectCircle(S, (A, B)) or
            intersectCircle(S, (B, C)) or
            intersectCircle(S, (C, D)) or
            intersectCircle(S, (D, A)))

如果你在写任何几何,你的库中可能已经有了上面的函数。否则,pointInRectangle()可以用几种方式实现;任何一般的多边形点方法都可以工作,但对于矩形,你可以检查这是否有效:

0 ≤ AP·AB ≤ AB·AB and 0 ≤ AP·AD ≤ AD·AD

intersectCircle()也很容易实现:一种方法是检查从P到直线的垂线的脚是否足够近并且在端点之间,否则检查端点。

最酷的是,同样的想法不仅适用于矩形,而且适用于一个圆与任何简单多边形的交点——甚至不必是凸多边形!

我想出的最简单的解决办法非常直接。

它的工作原理是在矩形中找到离圆最近的点,然后比较距离。

您可以通过一些操作来完成所有这些操作,甚至可以避免使用平方根函数。

public boolean intersects(float cx, float cy, float radius, float left, float top, float right, float bottom)
{
   float closestX = (cx < left ? left : (cx > right ? right : cx));
   float closestY = (cy < top ? top : (cy > bottom ? bottom : cy));
   float dx = closestX - cx;
   float dy = closestY - cy;

   return ( dx * dx + dy * dy ) <= radius * radius;
}

就是这样!上面的解决方案假设原点在世界的左上方,x轴指向下方。

如果你想要一个解决移动的圆形和矩形之间碰撞的解决方案,这要复杂得多,并且包含在我的另一个答案中。

稍微改进一下e。james的回答:

double dx = abs(circle.x - rect.x) - rect.w / 2,
       dy = abs(circle.y - rect.y) - rect.h / 2;

if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }

return (dx * dx + dy * dy <= circle.r * circle.r);

这就减去了一次,而不是最多减去三次。