遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

As part of my undergraduate CompSci degree, we were assigned the problem of finding optimal jvm flags for the Jikes research virtual machine. This was evaluated using the Dicappo benchmark suite which returns a time to the console. I wrote a distributed gentic alogirthm that switched these flags to improve the runtime of the benchmark suite, although it took days to run to compensate for hardware jitter affecting the results. The only problem was I didn't properly learn about the compiler theory (which was the intent of the assignment).

我本可以用现有的默认标志来播种初始种群,但有趣的是,算法发现了一个与O3优化级别非常相似的配置(但实际上在许多测试中更快)。

编辑:我还用Python写了我自己的遗传算法框架,只是使用popen命令来运行各种基准测试,尽管如果不是评估作业,我会看看pyEvolve。

其他回答

我做了一些生活在这个小世界里的小动物。他们有一个神经网络大脑,从世界上接收一些输入,输出是其他行动的运动矢量。他们的大脑就是基因。

该项目从随机的动物群体开始,它们的大脑是随机的。输入和输出神经元是静止的,但中间的神经元不是。

环境中有食物和危险。食物可以增加能量,当你有足够的能量时,你就可以交配了。危险会降低能量,如果能量为0,他们就会死亡。

最终,这些生物进化到可以在世界各地移动,寻找食物和躲避危险。

于是我决定做一个小实验。我给这个生物的大脑一个输出神经元叫做“嘴”,一个输入神经元叫做“耳朵”。重新开始,惊讶地发现它们进化到最大化空间,每个生物都呆在各自的部分(食物是随机放置的)。他们学会了相互合作,不妨碍彼此。凡事总有例外。

然后我尝试了一些有趣的事情。死去的生物将成为食物。猜猜发生了什么事!进化出了两种生物,一种是成群攻击,另一种是高度回避。

那么这里的教训是什么呢?沟通意味着合作。一旦你引入了一个元素,即伤害他人意味着你获得了一些东西,那么合作就会被破坏。

我想知道这对自由市场和资本主义体系有何影响。我的意思是,如果企业可以伤害他们的竞争并侥幸逃脱,那么很明显,他们会尽其所能来伤害竞争。

编辑:

我用c++写的,没有使用框架。我自己写了神经网络和GA代码。埃里克,谢谢你这么说。人们通常不相信GA的力量(尽管其局限性很明显),直到他们玩过它。GA很简单,但不过分简单化。

对于怀疑者来说,神经网络已经被证明能够模拟任何功能,只要它们有不止一层。遗传算法是一种非常简单的方法,可以在解空间中找到局部和全局最小值。将遗传算法与神经网络结合起来,你就有了一个很好的方法来寻找函数,为一般问题找到近似解。因为我们使用的是神经网络,所以我们是针对某些输入优化函数,而不是像其他人使用遗传算法那样对某个函数的某些输入进行优化

下面是生存示例的演示代码:http://www.mempko.com/darcs/neural/demos/eaters/ 建立产品说明:

安装darcs, libboost, liballegro, gcc, cmake, make Darcs克隆——懒惰http://www.mempko.com/darcs/neural/ cd神经 cmake。 使 cd演示/吃 吃。/

除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。

在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。

我有自己的进化算法框架。

我构建了一个简单的GA,用于在音乐播放时从频谱中提取有用的模式。输出用于驱动winamp插件中的图形效果。

输入:一些FFT帧(想象一个二维浮点数组) 输出:单个浮点值(输入的加权和),阈值为0.0或1.0 基因:输入权重 适应度函数:占空比、脉宽、BPM在合理范围内的组合。

我将一些ga调整到频谱的不同部分以及不同的BPM限制,所以它们不会趋向于收敛到相同的模式。来自每个种群的前4个的输出被发送到渲染引擎。

一个有趣的副作用是,整个人群的平均健康状况是音乐变化的一个很好的指标,尽管通常需要4-5秒才能发现。

2004年1月,飞利浦新显示技术公司(Philips New Display Technologies)联系了我,他们正在为有史以来第一款商业电子墨水——索尼Librie——制造电子产品。索尼Librie只在日本上市,比亚马逊Kindle和其他电子墨水在美国和欧洲上市早了好几年。

飞利浦的工程师遇到了一个大问题。在产品上市的几个月前,他们在换页面时仍然会出现重影。问题是产生静电场的200个驱动器。每个驱动器都有一个特定的电压,必须设置在0到1000mv之间。但如果你改变其中一个,就会改变一切。

因此,单独优化每个驱动器的电压是不可能的。可能的值组合的数量以数十亿计,一个特殊的相机大约需要1分钟来评估一个组合。工程师们尝试了许多标准的优化技术,但都没有达到预期的效果。

首席工程师联系了我,因为我之前已经向开源社区发布了一个遗传编程库。他问全科医生/全科医生是否会帮忙,以及我是否能参与其中。我这样做了,在大约一个月的时间里,我们一起工作,我在合成数据上编写和调整GA库,他则将其集成到他们的系统中。然后,有一个周末,他们让它和真人一起直播。

接下来的周一,我收到了他和他们的硬件设计师发来的溢美之词,说没人会相信GA发现的惊人结果。就是这样。同年晚些时候,该产品上市了。

我没有为此得到一分钱,但我有“吹嘘”的权利。他们从一开始就说他们已经超出预算了,所以我在开始工作之前就知道是什么交易。这对于气体的应用是一个很好的例子。:)

There was an competition on codechef.com (great site by the way, monthly programming competitions) where one was supposed to solve an unsolveable sudoku (one should come as close as possible with as few wrong collumns/rows/etc as possible).What I would do, was to first generate a perfect sudoku and then override the fields, that have been given. From this pretty good basis on I used genetic programming to improve my solution.I couldn't think of a deterministic approach in this case, because the sudoku was 300x300 and search would've taken too long.