昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

两种思路,查找任何匹配项所需的速度,与查找所有匹配项所需要的速度相比,与存储相比。

对于第二种情况,我想指出一个GPU并行版本,它查询所有匹配的袜子。

如果您有多个要匹配的财产,则可以使用分组元组和更高级的zip迭代器以及推力的转换函数,尽管这里是一个基于GPU的简单查询:

//test.cu
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/copy.h>
#include <thrust/count.h>
#include <thrust/remove.h>
#include <thrust/random.h>
#include <iostream>
#include <iterator>
#include <string>

// Define some types for pseudo code readability
typedef thrust::device_vector<int> GpuList;
typedef GpuList::iterator          GpuListIterator;

template <typename T>
struct ColoredSockQuery : public thrust::unary_function<T,bool>
{
    ColoredSockQuery( int colorToSearch )
    { SockColor = colorToSearch; }

    int SockColor;

    __host__ __device__
    bool operator()(T x)
    {
        return x == SockColor;
    }
};


struct GenerateRandomSockColor
{
    float lowBounds, highBounds;

    __host__ __device__
    GenerateRandomSockColor(int _a= 0, int _b= 1) : lowBounds(_a), highBounds(_b) {};

    __host__ __device__
    int operator()(const unsigned int n) const
    {
        thrust::default_random_engine rng;
        thrust::uniform_real_distribution<float> dist(lowBounds, highBounds);
        rng.discard(n);
        return dist(rng);
    }
};

template <typename GpuListIterator>
void PrintSocks(const std::string& name, GpuListIterator first, GpuListIterator last)
{
    typedef typename std::iterator_traits<GpuListIterator>::value_type T;

    std::cout << name << ": ";
    thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " "));
    std::cout << "\n";
}

int main()
{
    int numberOfSocks = 10000000;
    GpuList socks(numberOfSocks);
    thrust::transform(thrust::make_counting_iterator(0),
                      thrust::make_counting_iterator(numberOfSocks),
                      socks.begin(),
                      GenerateRandomSockColor(0, 200));

    clock_t start = clock();

    GpuList sortedSocks(socks.size());
    GpuListIterator lastSortedSock = thrust::copy_if(socks.begin(),
                                                     socks.end(),
                                                     sortedSocks.begin(),
                                                     ColoredSockQuery<int>(2));
    clock_t stop = clock();

    PrintSocks("Sorted Socks: ", sortedSocks.begin(), lastSortedSock);

    double elapsed = (double)(stop - start) * 1000.0 / CLOCKS_PER_SEC;
    std::cout << "Time elapsed in ms: " << elapsed << "\n";

    return 0;
}

    //nvcc -std=c++11 -o test test.cu

1000万只袜子的运行时间:9毫秒

其他回答

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效

对于p双袜子(n=2p只袜子),我实际上是这样做的:

从袜子堆里随便拿一只袜子。对于第一只袜子,或者如果之前选择的所有袜子都已配对,只需将袜子放入前面未配对袜子“阵列”的第一个“槽”中。如果有一个或多个选定的未配对袜子,请对照阵列中的所有未配对袜子检查当前袜子。在构建阵列时,可以将袜子分为普通类别或类型(白色/黑色、脚踝/圆领、运动型/连衣裙),并“向下搜索”以仅比较同类。如果你找到了一个可以接受的匹配,把两只袜子放在一起,然后把它们从阵列中去掉。如果没有,请将当前袜子放入阵列中第一个打开的插槽中。对每只袜子重复上述步骤。

这种方案的最坏情况是,每双袜子都不同,必须完全匹配,而且你挑选的第一双n/2袜子都不同。这是你的O(n2)场景,极不可能。如果袜子的独特类型的数量t小于袜子对的数量p=n/2,并且每种类型的袜子都足够相似(通常在穿着相关的术语中),使得该类型的任何袜子都可以与任何其他袜子配对,那么正如我上面所推断的,你必须与之进行比较的袜子的最大数量是t,之后你拉动的下一只袜子将与未配对的袜子之一相匹配。这种情况在普通袜子抽屉中比在最坏情况下更可能发生,并将最坏情况的复杂性降低到O(n*t),其中通常t<<n。

如果“移动”操作相当昂贵,而“比较”操作很便宜,并且无论如何都需要将整个集合移动到一个缓冲区中,在那里搜索速度比原始存储快得多。。。只需将排序整合到强制移动中即可。

我发现,将分拣过程整合到晾衣架中,这一过程变得轻而易举。无论如何,我需要拿起每一只袜子,然后把它挂起来(移动),把它挂在绳子上的某个特定位置几乎不需要任何费用。现在,为了不强制搜索整个缓冲区(字符串),我选择按颜色/阴影放置袜子。左边更黑,右边更亮,前面更鲜艳。现在,在我挂上每一只袜子之前,我先看看它的“右边附近”是否已经有一只匹配的袜子——这限制了“扫描”其他2-3只袜子——如果有,我就把另一只挂在旁边。然后,我把它们成对地卷起来,然后在干的时候把它们从绳子上取下来。

现在,这似乎与顶级答案所建议的“按颜色形成桩”没有什么不同,但首先,通过不选择离散桩而是选择范围,我没有问题将“紫色”分类为“红色”还是“蓝色”桩;它只是介于两者之间。然后通过集成两个操作(挂起晾干和分拣),挂起时的分拣开销大约是单独分拣的10%。

我已经采取了简单的步骤,将我的努力减少到一个需要O(1)时间的过程中。

通过将我的输入减少到两种袜子中的一种(休闲用的白色袜子,工作用的黑色袜子),我只需要确定手中有哪种袜子。(从技术上讲,由于它们从未一起清洗过,我已将过程缩短到O(0)时间。)

为了找到合适的袜子,需要提前付出一些努力,并购买足够数量的袜子,以消除对现有袜子的需求。因为我在需要黑色袜子之前就已经做了这件事,所以我的努力很小,但里程可能会有所不同。

这种前期工作在非常流行和有效的代码中已经多次出现。示例包括#DEFINE'将圆周率定义为几个小数(其他示例也存在,但这是我现在想到的)。

成本:移动袜子->高,查找/搜索袜子排成一排->小

我们想做的是减少移动次数,并用搜索次数进行补偿。此外,我们还可以利用智人的多威胁环境,在解密缓存中保存更多的东西。

X=您的,Y=您的配偶

从所有袜子的A堆开始:

选择两个袜子,将相应的X袜子放在X线上,将Y袜子放在Y线上的下一个可用位置。

直到A为空。

对于每行X和Y

选择行中的第一只袜子,沿着行搜索,直到找到相应的袜子。放入相应的袜子成品线。可选当您搜索线条时,当前正在查看的袜子与之前的袜子相同,请对这些袜子执行步骤2。

可选地,在第一步中,您从该行中拾取两个袜子,而不是两个,因为缓存内存足够大,我们可以快速识别其中一个袜子是否与您正在观察的行上的当前袜子匹配。如果你有幸拥有三只手臂,那么考虑到受试者的记忆足够大,你可以同时解析三只袜子。

直到X和Y都为空。

Done

然而,由于这与选择排序具有相似的复杂性,由于I/O(移动袜子)和搜索(搜索袜子的行)的速度,所花费的时间要少得多。