考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
正常的算术是以10为基数的,所以小数表示十分、百分等。当你试图用二进制2为基数的算术表示浮点数时,你要处理的是半、四、八等。
在硬件中,浮点存储为整数尾数和指数。尾数表示有效数字。指数类似于科学记数法,但它使用的基数是2而不是10。例如,64.0将用尾数1和指数6表示。0.125将用尾数1和指数-3表示。
浮点小数必须加上2的负幂
0.1b = 0.5d
0.01b = 0.25d
0.001b = 0.125d
0.0001b = 0.0625d
0.00001b = 0.03125d
等等
在处理浮点运算时,通常使用误差增量而不是相等运算符。而不是
if(a==b) ...
你会使用
delta = 0.0001; // or some arbitrarily small amount
if(a - b > -delta && a - b < delta) ...
其他回答
除了其他正确答案之外,您可能还需要考虑缩放值以避免浮点运算的问题。
例如:
var result = 1.0 + 2.0; // result === 3.0 returns true
…而不是:
var result = 0.1 + 0.2; // result === 0.3 returns false
在JavaScript中,表达式0.1+0.2===0.3返回false,但幸运的是,浮点中的整数运算是精确的,因此可以通过缩放来避免十进制表示错误。
作为一个实际的例子,为了避免精度至关重要的浮点问题,建议1将钱作为一个整数来处理:2550美分而不是25.50美元。
1 Douglas Crockford:JavaScript:好的部分:附录A——糟糕的部分(第105页)。
存储在计算机中的浮点数由两部分组成,一部分是整数,另一部分是基数乘以整数部分的指数。
如果计算机在基数为10的情况下工作,则0.1将是1 x 10⁻¹,0.2将是2 x 10⁻¹,0.3将是3 x 10⁻¹. 整数运算简单而准确,所以加上0.1+0.2显然会得到0.3。
计算机通常不以10为基数工作,而是以2为基数工作。对于某些值,仍然可以得到精确的结果,例如0.5是1 x 2⁻¹和0.25是1 x 2⁻²,将它们相加,结果为3 x 2⁻²或0.75。确切地
问题是数字可以精确地以10为基数表示,但不能以2为基数。这些数字需要四舍五入到最接近的相等值。假设非常常见的IEEE 64位浮点格式,最接近0.1的数字是3602879701896397 x 2⁻⁵⁵, 最接近0.2的数字是7205759403792794 x 2⁻⁵⁵; 将它们相加,得到10808639105689191 x 2⁻⁵⁵, 或精确的十进制值0.30000000000000000444089209850062616169452667236328125。浮点数通常四舍五入以显示。
一些统计数据与这个著名的双精度问题有关。
当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:
0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)
当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:
0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)
*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。
浮点数的陷阱是它们看起来像十进制,但它们是二进制的。
2的唯一素因子是2,而10的素因子为2和5。这样做的结果是,每一个可以完全写成二进制分数的数字也可以完全写成十进制分数,但只有一部分可以写成十进制分数的数字可以写成二进制分数。
浮点数本质上是一个有效位数有限的二进制分数。如果你超过这些有效数字,那么结果将被四舍五入。
当您在代码中键入文字或调用函数将浮点数解析为字符串时,它需要一个十进制数,并将该十进制数的二进制近似值存储在变量中。
当您打印浮点数或调用函数将浮点数转换为字符串时,它将打印浮点数的十进制近似值。可以将二进制数字精确地转换为十进制,但在转换为字符串*时,我所知道的任何语言都不会默认这样做。一些语言使用固定数量的有效数字,其他语言使用最短的字符串,该字符串将“往返”返回到相同的浮点值。
*Python在将浮点数转换为“decimal.decimal”时确实会进行精确的转换。这是我所知道的获得浮点数的精确十进制等效值的最简单方法。
这个问题的许多重复问题都是关于浮点舍入对特定数字的影响。在实践中,通过查看感兴趣的计算的确切结果而不是仅仅阅读它,更容易了解它的工作原理。一些语言提供了实现这一点的方法,例如在Java中将浮点或双精度转换为BigDecimal。
由于这是一个语言不可知的问题,因此需要语言不可知工具,例如十进制到浮点转换器。
将其应用于问题中的数字,视为双精度:
0.1转换为0.1000000000000000055511151231257827021181583404541015625,
0.2转换为0.200000000000000011102230246251565404236316680908203125,
0.3转换为0.299999999999999988897769753748434595763683319091796875,以及
0.300000000000000004转换为0.30000000000000000444089209850062616169452667236328125。
手动或在十进制计算器(如Full Precision calculator)中添加前两个数字,显示实际输入的精确和为0.30000000000000000166533453693773481063544750213623046875。
如果四舍五入到等于0.3,则舍入误差将为0.000000000000000027755575615628913510591702705078125。四舍五入等于0.300000000000000004也会产生舍入误差0.000000000000000027755575615628913510591702705078125。打成平手的规则适用。
返回浮点转换器,0.300000000000000004的原始十六进制是3fd333333333334,以偶数结尾,因此是正确的结果。