我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。


当前回答

嗯,很多回复的代码都很长,很难读…

我建议在处理数组时使用numpy及其漂亮的特性:

import numpy as np
def pcc(X, Y):
   ''' Compute Pearson Correlation Coefficient. '''
   # Normalise X and Y
   X -= X.mean(0)
   Y -= Y.mean(0)
   # Standardise X and Y
   X /= X.std(0)
   Y /= Y.std(0)
   # Compute mean product
   return np.mean(X*Y)

# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)

其他回答

你可以用pandas.DataFrame这样做。相关系数:

import pandas as pd
a = [[1, 2, 3],
     [5, 6, 9],
     [5, 6, 11],
     [5, 6, 13],
     [5, 3, 13]]
df = pd.DataFrame(data=a)
df.corr()

这给了

          0         1         2
0  1.000000  0.745601  0.916579
1  0.745601  1.000000  0.544248
2  0.916579  0.544248  1.000000

你可以看看scipy.stats:

from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)

>>>
Help on function pearsonr in module scipy.stats.stats:

pearsonr(x, y)
 Calculates a Pearson correlation coefficient and the p-value for testing
 non-correlation.

 The Pearson correlation coefficient measures the linear relationship
 between two datasets. Strictly speaking, Pearson's correlation requires
 that each dataset be normally distributed. Like other correlation
 coefficients, this one varies between -1 and +1 with 0 implying no
 correlation. Correlations of -1 or +1 imply an exact linear
 relationship. Positive correlations imply that as x increases, so does
 y. Negative correlations imply that as x increases, y decreases.

 The p-value roughly indicates the probability of an uncorrelated system
 producing datasets that have a Pearson correlation at least as extreme
 as the one computed from these datasets. The p-values are not entirely
 reliable but are probably reasonable for datasets larger than 500 or so.

 Parameters
 ----------
 x : 1D array
 y : 1D array the same length as x

 Returns
 -------
 (Pearson's correlation coefficient,
  2-tailed p-value)

 References
 ----------
 http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

如果你不喜欢安装scipy,我使用了这个快速的hack,稍微修改了Programming Collective Intelligence:

def pearsonr(x, y):
  # Assume len(x) == len(y)
  n = len(x)
  sum_x = float(sum(x))
  sum_y = float(sum(y))
  sum_x_sq = sum(xi*xi for xi in x)
  sum_y_sq = sum(yi*yi for yi in y)
  psum = sum(xi*yi for xi, yi in zip(x, y))
  num = psum - (sum_x * sum_y/n)
  den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
  if den == 0: return 0
  return num / den

你可以看看这篇文章。这是一个使用pandas库(适用于Python)根据多个文件的历史外汇货币对数据计算相关性的示例,然后使用seaborn库生成热图图。

http://www.tradinggeeks.net/2015/08/calculating-correlation-in-python/

def correlation_score(y_true, y_pred):
    """Scores the predictions according to the competition rules. 
    
    It is assumed that the predictions are not constant.
    
    Returns the average of each sample's Pearson correlation coefficient"""
    
    y2 = y_pred.copy()
    y2 -= y2.mean(axis=0);    y2 /= y2.std(axis=0) 
    y1 = y_true.copy(); 
    y1 -= y1.mean(axis=0);    y1 /= y1.std(axis=0) 
        
    c = (y1*y2).mean().mean()# Correlation for rescaled matrices is just matrix product and average 
        
    return c