有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
当前回答
以下是基于上述答案的swift 3.0解决方案:
for (i, point) in allPoints.enumerated() {
let nextPoint = i == allPoints.count - 1 ? allPoints[0] : allPoints[i+1]
signedArea += (point.x * nextPoint.y - nextPoint.x * point.y)
}
let clockwise = signedArea < 0
其他回答
下面是一个基于@Beta答案的算法的简单c#实现。
让我们假设我们有一个Vector类型,它的X和Y属性为double类型。
public bool IsClockwise(IList<Vector> vertices)
{
double sum = 0.0;
for (int i = 0; i < vertices.Count; i++) {
Vector v1 = vertices[i];
Vector v2 = vertices[(i + 1) % vertices.Count];
sum += (v2.X - v1.X) * (v2.Y + v1.Y);
}
return sum > 0.0;
}
%是执行模运算的模运算符或余数运算符,该运算符(根据维基百科)在一个数除以另一个数后求余数。
根据@MichelRouzic评论的优化版本:
double sum = 0.0;
Vector v1 = vertices[vertices.Count - 1]; // or vertices[^1] with
// C# 8.0+ and .NET Core
for (int i = 0; i < vertices.Count; i++) {
Vector v2 = vertices[i];
sum += (v2.X - v1.X) * (v2.Y + v1.Y);
v1 = v2;
}
return sum > 0.0;
这不仅节省了模运算%,还节省了数组索引。
测试(参见与@WDUK的讨论)
public static bool IsClockwise(IList<(double X, double Y)> vertices)
{
double sum = 0.0;
var v1 = vertices[^1];
for (int i = 0; i < vertices.Count; i++) {
var v2 = vertices[i];
sum += (v2.X - v1.X) * (v2.Y + v1.Y);
Console.WriteLine($"(({v2.X,2}) - ({v1.X,2})) * (({v2.Y,2}) + ({v1.Y,2})) = {(v2.X - v1.X) * (v2.Y + v1.Y)}");
v1 = v2;
}
Console.WriteLine(sum);
return sum > 0.0;
}
public static void Test()
{
Console.WriteLine(IsClockwise(new[] { (-5.0, -5.0), (-5.0, 5.0), (5.0, 5.0), (5.0, -5.0) }));
// infinity Symbol
//Console.WriteLine(IsClockwise(new[] { (-5.0, -5.0), (-5.0, 5.0), (5.0, -5.0), (5.0, 5.0) }));
}
The cross product measures the degree of perpendicular-ness of two vectors. Imagine that each edge of your polygon is a vector in the x-y plane of a three-dimensional (3-D) xyz space. Then the cross product of two successive edges is a vector in the z-direction, (positive z-direction if the second segment is clockwise, minus z-direction if it's counter-clockwise). The magnitude of this vector is proportional to the sine of the angle between the two original edges, so it reaches a maximum when they are perpendicular, and tapers off to disappear when the edges are collinear (parallel).
因此,对于多边形的每个顶点(点),计算两条相邻边的叉乘大小:
Using your data:
point[0] = (5, 0)
point[1] = (6, 4)
point[2] = (4, 5)
point[3] = (1, 5)
point[4] = (1, 0)
把边连续地标为 edgeA是从point0到point1的段 点1到点2之间的edgeB ... edgeE在point4和point0之间。
那么顶点A (point0)在两者之间 edgeE[从点4到点0] 从point0到' point1'
这两条边本身就是向量,它们的x坐标和y坐标可以通过减去它们的起点和终点的坐标来确定:
edgeE = point0 - point4 = (1,0) - (5,0) = (- 4,0) and edgeA = point1 - point0 = (6,4) - (1,0) = (5,4) and
这两个相邻边的外积是用下面矩阵的行列式来计算的,这个矩阵是通过将两个向量的坐标放在表示三个坐标轴的符号(i, j, & k)下面来构造的。第三个(零)值坐标在那里,因为外积概念是一个三维结构,所以我们将这些2-D向量扩展到3-D,以便应用外积:
i j k
-4 0 0
1 4 0
假设所有的叉乘都产生一个垂直于两个向量相乘平面的向量,上面矩阵的行列式只有一个k(或z轴)分量。 计算k轴或z轴分量大小的公式为 A1 *b2 - a2*b1 = -4* 4 - 0* 1 = -16
这个值的大小(-16)是两个原始向量夹角的正弦值,乘以两个向量大小的乘积。 实际上,它值的另一个公式是 A X B(叉乘)= |A| * |B| * sin(AB)。
为了得到角度的大小你需要用这个值(-16)除以两个向量大小的乘积。
|A| * |B| = 4 *根号(17)= 16.4924…
所以sin(AB) = -16 / 16.4924 = -.97014…
这是一个度量顶点后的下一段是否向左或向右弯曲,以及弯曲的程度。不需要取arcsin函数。我们只关心它的大小,当然还有它的符号(正的还是负的)!
对闭合路径周围的其他4个点都这样做,并将每个顶点的计算值相加。
如果最终的和是正的,就顺时针,负的,逆时针。
Sean的答案的JavaScript实现:
function calcArea(poly) { if(!poly || poly.length < 3) return null; let end = poly.length - 1; let sum = poly[end][0]*poly[0][1] - poly[0][0]*poly[end][1]; for(let i=0; i<end; ++i) { const n=i+1; sum += poly[i][0]*poly[n][1] - poly[n][0]*poly[i][1]; } return sum; } function isClockwise(poly) { return calcArea(poly) > 0; } let poly = [[352,168],[305,208],[312,256],[366,287],[434,248],[416,186]]; console.log(isClockwise(poly)); let poly2 = [[618,186],[650,170],[701,179],[716,207],[708,247],[666,259],[637,246],[615,219]]; console.log(isClockwise(poly2));
我很确定这是对的。这似乎是有效的:-)
这些多边形看起来是这样的,如果你想知道的话:
这是OpenLayers 2的实现函数。有一个顺时针多边形的条件是面积< 0,这是由这个参考确定的。
function IsClockwise(feature)
{
if(feature.geometry == null)
return -1;
var vertices = feature.geometry.getVertices();
var area = 0;
for (var i = 0; i < (vertices.length); i++) {
j = (i + 1) % vertices.length;
area += vertices[i].x * vertices[j].y;
area -= vertices[j].x * vertices[i].y;
// console.log(area);
}
return (area < 0);
}
Javascript实现的lhf的答案 (再次强调,这只适用于简单的多边形,即不适用于图8)
let polygon = [ {x:5,y:0}, {x:6,y:4}, {x:4,y:5}, {x:1,y:5}, {x:1,y:0} ] document.body.innerHTML += `Polygon ${polygon.map(p=>`(${p.x}, ${p.y})`).join(", ")} is clockwise? ${isPolygonClockwise(polygon)}` let reversePolygon = [] polygon.forEach(point=>reversePolygon.unshift(point)) document.body.innerHTML += `<br/>Polygon ${reversePolygon.map(p=>`(${p.x}, ${p.y})`).join(", ")} is clockwise? ${isPolygonClockwise(reversePolygon)}` function isPolygonClockwise (polygon) { // From http://www.faqs.org/faqs/graphics/algorithms-faq/ "How do I find the orientation of a simple polygon?" // THIS SOMETIMES FAILS if the polygon is a figure 8, or similar shape where it crosses over itself // Take the lowest point (break ties with the right-most). if (polygon.length < 3) { return true // A single point or two points can't be clockwise/counterclockwise } let previousPoint = polygon[0] let lowestPoint = polygon[1] let nextPoint = polygon[2] polygon.forEach((point, index)=>{ if (point.y > lowestPoint.y || (point.y === lowestPoint.y && point.x > lowestPoint.x)) { // larger y values are lower, in svgs // Break ties with furthest right previousPoint = polygon[(index-1) >= (0) ? (index-1) : (polygon.length-1)] lowestPoint = polygon[index] nextPoint = polygon[(index+1) <= (polygon.length-1) ? (index+1) : (0)] } }) // Check the angle between the previous point, that point, and the next point. // If the angle is less than PI radians, the polygon is clockwise let angle = findAngle(previousPoint, lowestPoint, nextPoint) return angle < Math.PI } function findAngle(A,B,C) { var AB = Math.atan2(B.y-A.y, B.x-A.x); var BC = Math.atan2(C.y-B.y, C.x-B.x); if (AB < 0) AB += Math.PI*2 if (BC < 0) BC += Math.PI*2 return BC-AB; }