这将在GUI中显示图形:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()

但我如何将图形保存到文件(例如foo.png)中?


当前回答

嗯,我确实建议使用包装器来渲染或控制绘图。示例可以是mpltex(https://github.com/liuyxpp/mpltex)或prettyplotlib(https://github.com/olgabot/prettyplotlib).

import mpltex

@mpltex.acs_decorator
def myplot():
  plt.figure()
  plt.plot(x,y,'b-',lable='xxx')
  plt.tight_layout(pad=0.5)
  plt.savefig('xxxx')  # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
  plt.close()

我基本上经常使用这个装饰器在美国化学学会、美国物理学会、美国光学学会、Elsivier等各种期刊上发表学术论文。

示例如下图所示(https://github.com/MarkMa1990/gradientDescent):

其他回答

您可以执行以下任一操作:

plt.show(hold=False)
plt.savefig('name.pdf')

记住在关闭GUI绘图之前让savefig完成。这样您可以提前看到图像。

或者,您可以使用plt.show()查看它然后关闭GUI并再次运行脚本,但这次将plt.show()替换为plt.savefig()。

或者,您可以使用

fig, ax = plt.figure(nrows=1, ncols=1)
plt.plot(...)
plt.show()
fig.savefig('out.pdf')

解决方案:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')

如果您想显示图像并保存图像,请使用:

%matplotlib inline

之后导入matplotlib

其他答案是正确的。然而,我有时发现我想稍后打开地物对象。例如,我可能希望更改标签大小、添加网格或执行其他处理。在一个完美的世界里,我只需重新运行生成情节的代码,并调整设置。唉,世界并不完美。因此,除了保存为PDF或PNG外,我还添加了:

with open('some_file.pkl', "wb") as fp:
    pickle.dump(fig, fp, protocol=4)

像这样,我可以稍后加载地物对象并根据需要操作设置。

我还为堆栈中的每个函数/方法编写了带有源代码和locals()字典的堆栈,以便稍后可以确切地知道是什么生成了该图。

注意:要小心,因为有时这种方法会生成巨大的文件。

根据问题Matplotlib(pyplot)savefig输出空白图像。

有一点需要注意:如果您使用plt.show,并且它应该在plt.savefig之后,否则您将给出一个空白图像。

详细示例:

import numpy as np
import matplotlib.pyplot as plt


def draw_result(lst_iter, lst_loss, lst_acc, title):
    plt.plot(lst_iter, lst_loss, '-b', label='loss')
    plt.plot(lst_iter, lst_acc, '-r', label='accuracy')

    plt.xlabel("n iteration")
    plt.legend(loc='upper left')
    plt.title(title)
    plt.savefig(title+".png")  # should before plt.show method

    plt.show()


def test_draw():
    lst_iter = range(100)
    lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
    # lst_loss = np.random.randn(1, 100).reshape((100, ))
    lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
    # lst_acc = np.random.randn(1, 100).reshape((100, ))
    draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")


if __name__ == '__main__':
    test_draw()

没有什么对我有用。问题是保存的图像很小,我找不到它是怎么变大的。

这似乎使它更大,但仍然不是全屏。

https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches

图set_size_inches((宽,高))

希望这对某人有所帮助。