使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?
当前回答
在Python中,请记住:
list1 = ['apples','bananas','pineapples']
list2 = list1
List2没有存储实际的列表,而是对list1的引用。因此,当您对list1执行任何操作时,list2也会发生变化。使用copy模块(非默认,在pip上下载)制作列表的原始副本(对于简单列表,copy.copy();对于嵌套列表,copy。deepcopy())。这将生成一个不会随第一个列表而更改的副本。
其他回答
让我惊讶的是,这还没有被提及,所以为了完整起见。。。
您可以使用“splat operator”:*执行列表解包,这也将复制列表的元素。
old_list = [1, 2, 3]
new_list = [*old_list]
new_list.append(4)
old_list == [1, 2, 3]
new_list == [1, 2, 3, 4]
这种方法的明显缺点是它仅在Python 3.5+中可用。
尽管从时间上看,这似乎比其他常用方法表现得更好。
x = [random.random() for _ in range(1000)]
%timeit a = list(x)
%timeit a = x.copy()
%timeit a = x[:]
%timeit a = [*x]
#: 2.47 µs ± 38.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
#: 2.47 µs ± 54.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
#: 2.39 µs ± 58.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
#: 2.22 µs ± 43.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
要使用的方法取决于要复制的列表的内容。如果列表中包含嵌套的dict,则deepcopy是唯一有效的方法,否则答案中列出的大多数方法(slice、loop[for]、copy、extend、combine或unpack)都将在类似的时间内工作和执行(loop和deepcopy除外,这两种方法执行得最差)。
剧本
from random import randint
from time import time
import copy
item_count = 100000
def copy_type(l1: list, l2: list):
if l1 == l2:
return 'shallow'
return 'deep'
def run_time(start, end):
run = end - start
return int(run * 1000000)
def list_combine(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = [] + l1
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'combine', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_extend(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = []
l2.extend(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'extend', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_unpack(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = [*l1]
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'unpack', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_deepcopy(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = copy.deepcopy(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'deepcopy', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_copy(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = list.copy(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'copy', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_slice(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = l1[:]
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'slice', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_loop(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = []
for i in range(len(l1)):
l2.append(l1[i])
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'loop', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
def list_list(data):
l1 = [data for i in range(item_count)]
start = time()
l2 = list(l1)
end = time()
if type(data) == dict:
l2[0]['test'].append(1)
elif type(data) == list:
l2.append(1)
return {'method': 'list()', 'copy_type': copy_type(l1, l2),
'time_µs': run_time(start, end)}
if __name__ == '__main__':
list_type = [{'list[dict]': {'test': [1, 1]}},
{'list[list]': [1, 1]}]
store = []
for data in list_type:
key = list(data.keys())[0]
store.append({key: [list_unpack(data[key]), list_extend(data[key]),
list_combine(data[key]), list_deepcopy(data[key]),
list_copy(data[key]), list_slice(data[key]),
list_loop(data[key])]})
print(store)
后果
[{"list[dict]": [
{"method": "unpack", "copy_type": "shallow", "time_µs": 56149},
{"method": "extend", "copy_type": "shallow", "time_µs": 52991},
{"method": "combine", "copy_type": "shallow", "time_µs": 53726},
{"method": "deepcopy", "copy_type": "deep", "time_µs": 2702616},
{"method": "copy", "copy_type": "shallow", "time_µs": 52204},
{"method": "slice", "copy_type": "shallow", "time_µs": 52223},
{"method": "loop", "copy_type": "shallow", "time_µs": 836928}]},
{"list[list]": [
{"method": "unpack", "copy_type": "deep", "time_µs": 52313},
{"method": "extend", "copy_type": "deep", "time_µs": 52550},
{"method": "combine", "copy_type": "deep", "time_µs": 53203},
{"method": "deepcopy", "copy_type": "deep", "time_µs": 2608560},
{"method": "copy", "copy_type": "deep", "time_µs": 53210},
{"method": "slice", "copy_type": "deep", "time_µs": 52937},
{"method": "loop", "copy_type": "deep", "time_µs": 834774}
]}]
Python 3.6计时
下面是使用Python 3.6.8的计时结果。请记住,这些时间是相对的,而不是绝对的。
我坚持只做浅层复制,还添加了一些在Python 2中不可能的新方法,例如list.copy()(Python 3切片的等价物)和两种形式的列表解包(*new_list,=list和new_list=[*list]):
METHOD TIME TAKEN
b = [*a] 2.75180600000021
b = a * 1 3.50215399999990
b = a[:] 3.78278899999986 # Python 2 winner (see above)
b = a.copy() 4.20556500000020 # Python 3 "slice equivalent" (see above)
b = []; b.extend(a) 4.68069800000012
b = a[0:len(a)] 6.84498999999959
*b, = a 7.54031799999984
b = list(a) 7.75815899999997
b = [i for i in a] 18.4886440000000
b = copy.copy(a) 18.8254879999999
b = []
for item in a:
b.append(item) 35.4729199999997
我们可以看到,Python 2的获胜者仍然表现出色,但并没有远远超过Python 3 list.copy(),特别是考虑到后者的出色可读性。
黑马是拆包和重新包装方法(b=[*a]),它比原始切片快约25%,比其他拆包方法(*b,=a)快两倍多。
b=a*1的表现也出奇地好。
请注意,这些方法不会为列表以外的任何输入输出等效结果。它们都适用于可切片对象,少数适用于任何可迭代对象,但只有copy.copy()适用于更一般的Python对象。
以下是相关方的测试代码(此处的模板):
import timeit
COUNT = 50000000
print("Array duplicating. Tests run", COUNT, "times")
setup = 'a = [0,1,2,3,4,5,6,7,8,9]; import copy'
print("b = list(a)\t\t", timeit.timeit(stmt='b = list(a)', setup=setup, number=COUNT))
print("b = copy.copy(a)\t", timeit.timeit(stmt='b = copy.copy(a)', setup=setup, number=COUNT))
print("b = a.copy()\t\t", timeit.timeit(stmt='b = a.copy()', setup=setup, number=COUNT))
print("b = a[:]\t\t", timeit.timeit(stmt='b = a[:]', setup=setup, number=COUNT))
print("b = a[0:len(a)]\t\t", timeit.timeit(stmt='b = a[0:len(a)]', setup=setup, number=COUNT))
print("*b, = a\t\t\t", timeit.timeit(stmt='*b, = a', setup=setup, number=COUNT))
print("b = []; b.extend(a)\t", timeit.timeit(stmt='b = []; b.extend(a)', setup=setup, number=COUNT))
print("b = []; for item in a: b.append(item)\t", timeit.timeit(stmt='b = []\nfor item in a: b.append(item)', setup=setup, number=COUNT))
print("b = [i for i in a]\t", timeit.timeit(stmt='b = [i for i in a]', setup=setup, number=COUNT))
print("b = [*a]\t\t", timeit.timeit(stmt='b = [*a]', setup=setup, number=COUNT))
print("b = a * 1\t\t", timeit.timeit(stmt='b = a * 1', setup=setup, number=COUNT))
所有其他贡献者都给出了很好的答案,当你有一个单一维度(水平化)列表时,这些方法是有效的,但是在目前提到的方法中,只有copy.deepcopy()可以克隆/复制列表,而当你使用多维嵌套列表(列表列表)时,它不会指向嵌套列表对象。虽然菲利克斯·克林在他的回答中提到了这一点,但这个问题还有一点问题,可能还有一个使用内置程序的解决方案,这可能会证明是深度复制的更快替代方案。
虽然new_list=old_list[:],copy.copy(old_list)'和Py3k old_list.copy()适用于单层列表,但它们恢复为指向嵌套在old_list和new_list中的列表对象,对其中一个列表对象的更改将在另一个列表中永久化。
编辑:新信息曝光
正如Aaron Hall和PM 2Ring所指出的那样,使用eval()不仅是一个坏主意,而且比copy.deepcopy()慢得多。这意味着,对于多维列表,唯一的选项是copy.deepcopy()。尽管如此,当您尝试在中等大小的多维数组上使用它时,它确实不是一个选项,因为性能会下降。我尝试使用42x42阵列来计时,这是前所未闻的,甚至对于生物信息学应用程序来说也是如此之大,我放弃了等待响应,只是开始在这篇文章中输入我的编辑。似乎唯一真正的选择就是初始化多个列表并独立处理它们。如果有人对如何处理多维列表复制有任何其他建议,将不胜感激。
正如其他人所说的那样,在多维列表中使用copy模块和copy.devcopy存在严重的性能问题。
在已经给出的答案中,缺少了一个独立于python版本的非常简单的方法,您可以在大多数时间使用(至少我这样做):
new_list = my_list * 1 # Solution 1 when you are not using nested lists
但是,如果my_list包含其他容器(例如,嵌套列表),则必须按照复制库中上述答案中的其他建议使用deepcopy。例如:
import copy
new_list = copy.deepcopy(my_list) # Solution 2 when you are using nested lists
。奖励:如果您不想复制元素,请使用(AKA浅层复制):
new_list = my_list[:]
让我们了解解决方案#1和解决方案#2之间的区别
>>> a = range(5)
>>> b = a*1
>>> a,b
([0, 1, 2, 3, 4], [0, 1, 2, 3, 4])
>>> a[2] = 55
>>> a,b
([0, 1, 55, 3, 4], [0, 1, 2, 3, 4])
正如您所看到的,当我们不使用嵌套列表时,解决方案#1工作得很好。让我们检查一下当我们将解决方案#1应用于嵌套列表时会发生什么。
>>> from copy import deepcopy
>>> a = [range(i,i+4) for i in range(3)]
>>> a
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
>>> b = a*1
>>> c = deepcopy(a)
>>> for i in (a, b, c): print i
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]]
>>> a[2].append('99')
>>> for i in (a, b, c): print i
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5, 99]]
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5, 99]] # Solution #1 didn't work in nested list
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]] # Solution #2 - DeepCopy worked in nested list
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录