我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
怎么样
int f(int n)
{
return -abs(n);
}
其他回答
Python 2.6:
f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)
我意识到这对讨论毫无帮助,但我无法抗拒。
这个怎么样?
int nasty(int input)
{
return input + INT_MAX/2;
}
在Python中
f=lambda n:n[0]if type(n)is list else[-n]
这个想法已经在其他答案中使用过,但我把它融入了Python的一行:
def f(n):
return str(n) if type(n) == int else -int(n)
这里有一个解决方案,其灵感来自于不能使用复数来解决这个问题的要求或声明。
乘以-1的平方根是一个想法,但似乎失败了,因为-1没有整数的平方根。但是,使用mathematica这样的程序可以得出如下公式
(18494364652+1)模(232-3)=0。
这几乎和平方根为-1一样好。函数的结果必须是有符号整数。因此,我将使用一个修改的模运算mods(x,n),它返回与x模n最接近0的整数y。只有极少数编程语言能够成功地进行模运算,但它很容易被定义。例如,在python中,它是:
def mods(x, n):
y = x % n
if y > n/2: y-= n
return y
使用上面的公式,问题现在可以解决为
def f(x):
return mods(x*1849436465, 2**32-3)
对于[-231-2231-2]范围内的所有整数,这满足f(f(x))=-x。f(x)的结果也在这个范围内,但当然计算需要64位整数。