我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这将在非常广泛的数字范围内发挥作用:

    static int f(int n)
    {
        int lastBit = int.MaxValue;
        lastBit++;
        int secondLastBit = lastBit >> 1;
        int tuple = lastBit | secondLastBit;
        if ((n & tuple) == tuple)
            return n + lastBit;
        if ((n & tuple) == 0)
            return n + lastBit;
        return -(n + lastBit);
    }

我最初的方法是使用最后一位作为检查位,以了解我们在第一次或第二次调用中的位置。基本上,我会在第一次调用后将此位设置为1,以向第二次调用发出第一次调用已经通过的信号。但是,这种方法被负数所击败,负数的最后一位在第一次调用期间已经到达1。

同样的理论适用于大多数负数的倒数第二位。但是,通常发生的情况是,大多数情况下,最后一位和第二位是相同的。它们要么都是负数的1,要么都是正数的0。

所以我的最后一个方法是检查它们是否都是1或都是0,这意味着在大多数情况下这是第一次调用。如果最后一位与第二个最后一位不同,那么我假设我们在第二次调用,然后简单地重新反转最后一位。显然,对于使用最后两位的非常大的数字来说,这不起作用。但是,它再次适用于非常广泛的数字。

其他回答

我试着打高尔夫,这是罗德里克·查普曼的回答。

无分支:74个字符

int f(int i){return(-((i&1)<<1)|1)*i-(-((i>>>31)<<1)|1)*(((i|-i)>>31)&1);}

带有分支,Java风格:58个字符

int f(int i){return i==0?0:(((i&1)==0?i:-i)+(i>0?-1:1));}

带分支,C样式:52个字符

int f(int i){return i?(((i&1)?-i:i)+(i>0?-1:1)):0;}

经过快速但有效的基准测试后,分支版本在我的机器上的速度提高了33%。(正数和负数的随机数据集,足够的重复,并防止编译器在预热时优化代码。)考虑到非分支版本中的操作数量以及可能的良好分支预测,这并不奇怪,因为函数被调用了两次:f(f(i))。当我将基准更改为度量:f(I)时,分支版本只快28%。我认为这证明了分支预测在第一种情况下确实有一些好处。更多证明:当使用f(f(f)(f(i)))进行测试时,分支版本的速度会快42%。

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}

这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。

…只是当n是32位整数时,f(f(n))=-n

那么,怎么样

Int64 f(Int64 n)
{
    return(n > Int32.MaxValue ? 
        -(n - 4L * Int32.MaxValue):
        n + 4L * Int32.MaxValue);
}

如果n是32位整数,则语句f(f(n))==-n将为真。

显然,这种方法可以扩展到更大范围的数字。。。

int f( int n ){
    return n==0?0:(n&1?n:-n)+(n<0?-1:1);
}

这个是Python中的。适用于n的所有负值:

f = abs