我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
f(n) { return IsWholeNumber(n)? 1/n : -1/n }
其他回答
怎么样:
f(n) = sign(n) - (-1)ⁿ * n
在Python中:
def f(n):
if n == 0: return 0
if n >= 0:
if n % 2 == 1:
return n + 1
else:
return -1 * (n - 1)
else:
if n % 2 == 1:
return n - 1
else:
return -1 * (n + 1)
Python自动将整数提升为任意长度的longs。在其他语言中,最大的正整数将溢出,因此它将适用于除该整数之外的所有整数。
为了使其适用于实数,您需要替换(-1)中的nⁿ 如果n>0,则为{上限(n);如果n<0},则为下限(n)。
在C#中(适用于任何双精度,溢出情况除外):
static double F(double n)
{
if (n == 0) return 0;
if (n < 0)
return ((long)Math.Ceiling(n) % 2 == 0) ? (n + 1) : (-1 * (n - 1));
else
return ((long)Math.Floor(n) % 2 == 0) ? (n - 1) : (-1 * (n + 1));
}
f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。
object f: (object) x {
if (x.length == 1)
x = (x, 0)
swap = x[0]
x[1] = x[0]
x[0] = -swap
if (x[1] == 0)
x = x[0]
return x
C++解决方案;
long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}
int n = 777;
assert(f(f(n)) == -n);
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
const unsigned long Magic = 0x8000000;
unsigned long f(unsigned long n)
{
if(n > Magic )
{
return Magic - n;
}
return n + Magic;
}
0~2^31