我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
下面是一个简短的Python答案:
def f(n):
m = -n if n % 2 == 0 else n
return m + sign(n)
一般情况
稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:
def g(n):
if n % k: return n + sign(n)
return -n + (k - 1) * sign(n)
这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:
N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)
或者,为了更容易理解,这里是k=3的示例循环:
1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6
这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。
兼容范围分析
映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。
对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。
其他回答
C函数:
int f(int n) /* Treats numbers in the range 0XC0000000 to 0X3FFFFFFF as valid to
generate f(f(x)) equal to -x. If n is within this range, it will
project n outside the range. If n is outside the range, it will
return the opposite of the number whose image is n. */
{
return n ? n > 0 ? n <= 0X3FFFFFFF ? 0X3FFFFFFF + n : 0X3FFFFFFF - n :\
n >= 0XC0000000 ? 0XC0000000 + n : 0XC0000000 - n : 0;
}
Ideone测试和下载链接
在C中,
int
f(int n) {
static int r = 0;
if (r == 1) {r--; return -1 * n; };
r++;
return n;
}
知道这是为了什么语言会有帮助。我错过了什么吗?许多“解决方案”似乎过于复杂,坦率地说,并非如此工作(当我读到问题时)。
斯卡拉:
def f(x: Any): Any = x match {
case i: Int => new { override def hashCode = -i }
case i @ _ => i.hashCode
}
在Java中也是如此:
public static Object f(final Object x) {
if(x instanceof Integer) {
return new Object() {
@Override
public int hashCode() {
return -(Integer)x;
}
};
}
return x.hashCode();
}
int f(int n) {
return ((n>0)? -1 : 1) * abs(n);
}
我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。
但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}
module Main where
class Tran σ τ | σ -> τ where
tran :: σ -> τ
instance Tran Int (() -> Int) where
tran n = \_ -> (-n)
instance Tran (() -> Int) Int where
tran g = g ()
f :: Tran σ τ => σ -> τ
f = tran
main :: IO ()
main = do
print $ f (f (42 :: Int)) -- --> -42
print $ f (f (0 :: Int)) -- --> 0
print $ f (f (-69 :: Int)) -- --> 69
接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:
#lang typed/racket
(: f (case->
[Number -> (-> Number)]
[(-> Number) -> Number]))
(define (f x)
(if (number? x) (λ () (- x)) (x)))
(f (f 42)) ; --> -42
(f (f 0)) ; --> 0
(f (f -69)) ; --> 69
(f (f 3/4)) ; --> -3/4
(f (f 8+7i)) ; --> -8-7i