我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
利用JavaScript异常。
function f(n) {
try {
return n();
}
catch(e) {
return function() { return -n; };
}
}
f(f(0))=>0f(f(1))=>-1
其他回答
虽然问题说n必须是32位int,但它没有说参数或返回类型必须是32比特int0
private final long MAGIC_BIT=1<<38;
long f(long n) {
return n & MAGIC_BIT != 0 ? -(n & !MAGIC_BIT) : n | MAGIC_BIT;
}
编辑:
这实际上是一个很好的面试问题。最好的答案是难以或不可能回答的,因为它迫使人们仔细思考,你可以观察并寻找:
他们会放弃吗?他们说这很愚蠢吗?他们是否尝试独特的方法?他们在处理问题时是否与您沟通?他们是否要求进一步细化要求?
etc.
永远不要只回答行为问题,除非你有一个非常好的答案。始终保持愉快,并尝试让提问者参与进来。不要沮丧,不要过早放弃!如果你真的一无所获,尝试一些完全非法的、可能奏效的方法,你将获得几乎全部的学分。
创建许多解的一种方法是注意,如果我们将整数划分为两个集合S和R
那么我们可以如下创建f:
如果x在R中,则f(x)=g(x)
如果x在S中,则f(x)=-invg(x)
其中invg(g(x))=x,所以invg是g的逆函数。
上面提到的第一个解决方案是分区R=偶数,R=奇数,g(x)=x+1。
我们可以取任意两个无限集合T,P s.T T+U=整数集合,取s=T+(-T),R=U+(-U)。
然后-S=S和-R=R通过它们的定义,我们可以将g取为从S到R的任何1-1对应关系,这必须存在,因为这两个集合都是无限的和可数的。
因此,这将为我们提供许多解决方案,但并非所有解决方案都可以编程,因为它们不会被有限地定义。
例如:
R=可被3整除的数字,S=不可被3除的数字。
然后我们取g(6r)=3r+1,g(6r+3)=3r+2。
我承认我会作弊,但还是符合要求。这是编程魔术,而不是数学。它适用于整个范围,-2^31除外。
int f(int n)
{
static bool eFlag = false; // Only executed once
eFlag = !eFlag;
return eFlag?-n:n;
}
void f(int x)
{
Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}
抱歉,伙计们。。。这太诱人了;)
很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。
public class Agreeable
{
public static bool operator==(Agreeable c, int n)
{ return true; }
public static bool operator!=(Agreeable c, int n)
{ return false; }
public static implicit operator Agreeable(int n)
{ return new Agreeable(); }
}
class Program
{
public static Agreeable f(Agreeable c)
{ return c; }
static void Main(string[] args)
{
Debug.Assert(f(f(0)) == 0);
Debug.Assert(f(f(5)) == -5);
Debug.Assert(f(f(-5)) == 5);
Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
}
}