我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

一个C++版本,可能会稍微改变规则,但适用于所有数值类型(浮点、整型、双精度),甚至是重载一元负号的类类型:

template <class T>
struct f_result
{
  T value;
};

template <class T>
f_result <T> f (T n)
{
  f_result <T> result = {n};
  return result;
}

template <class T>
T f (f_result <T> n)
{
  return -n.value;
}

void main (void)
{
  int n = 45;
  cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
  float p = 3.14f;
  cout << "f(f(" << p << ")) = " << f(f(p)) << endl;
}

其他回答

#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}

也许是作弊?(python)

def f(n):    
    if isinstance(n, list):
        return -n[0]
    else:
        return [n,0]    
n = 4
print f(f(n))

--output--
-4

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}

这也是一个解决方案(但我们稍微改变了一下规则):

def f(n):
    if isinstance(n,int):
        return str(n)
    else:
        return -int(n)

上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。

红宝石:

def f( n )
  return 0 unless n != 0 
  ( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end