我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

斯卡拉:

def f(x: Any): Any = x match {
  case i: Int => new { override def hashCode = -i }
  case i @ _  => i.hashCode
}

在Java中也是如此:

public static Object f(final Object x) {
  if(x instanceof Integer) {
    return new Object() {
      @Override 
      public int hashCode() {
        return -(Integer)x;
      }
    };
  }
  return x.hashCode();
}

其他回答

好问题!

这花了我大约35秒的时间思考并写下:

int f(int n){
    static int originalN=0;
    if (n!=0)
        originalN=n;
    return n-originalN;
}

这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。

double f(double n)
{
    if (n == (double)(int)n)
        return n + 0.5;
    else
        return -(n - 0.5);
}

这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。

不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。

f#中的简单解决方案(不使用“技巧”)

let rec f n =
    if n = 0 then 0
    elif n > 0 then
        if (f (n - 1) <> n) then n + 1
        else -(n - 1)
    else
        if (f (-(n - 1)) = n) then n - 1
        else -(n + 1) 

f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。

object f: (object) x {
    if (x.length == 1)
        x = (x, 0)
    swap = x[0]
    x[1] = x[0]
    x[0] = -swap
    if (x[1] == 0)
        x = x[0]
    return x

Python 2.6:

f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)

我意识到这对讨论毫无帮助,但我无法抗拒。