如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

下面是Haversine公式的java实现。

public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
  double venueLat, double venueLng) {

    double latDistance = Math.toRadians(userLat - venueLat);
    double lngDistance = Math.toRadians(userLng - venueLng);

    double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
      + Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
      * Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);

    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

    return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}

请注意,这里我们将答案四舍五入到最近的km。

其他回答

这是一个简单的PHP函数,它将给出一个非常合理的近似值(误差小于+/-1%)。

<?php
function distance($lat1, $lon1, $lat2, $lon2) {

    $pi80 = M_PI / 180;
    $lat1 *= $pi80;
    $lon1 *= $pi80;
    $lat2 *= $pi80;
    $lon2 *= $pi80;

    $r = 6372.797; // mean radius of Earth in km
    $dlat = $lat2 - $lat1;
    $dlon = $lon2 - $lon1;
    $a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
    $c = 2 * atan2(sqrt($a), sqrt(1 - $a));
    $km = $r * $c;

    //echo '<br/>'.$km;
    return $km;
}
?>

如前所述;地球不是一个球体。它就像马克·麦奎尔决定用来练习的一个很旧很旧的棒球——到处都是凹痕和凸起。简单的计算(像这样)把它当作一个球体。

不同的方法或多或少的精确取决于你在这个不规则的卵形上的位置以及你的点之间的距离(它们越近,绝对误差范围就越小)。你的期望越精确,计算就越复杂。

更多信息:维基百科地理距离

在其他答案中,r中的实现是缺失的。

用地质圈包中的distm函数计算两点之间的距离非常简单:

distm(p1, p2, fun = distHaversine)

地点:

p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid 

由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:

distm(p1, p2, fun = distVincentyEllipsoid)

当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:

hav.dist <- function(long1, lat1, long2, lat2) {
  R <- 6371
  diff.long <- (long2 - long1)
  diff.lat <- (lat2 - lat1)
  a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
  b <- 2 * asin(pmin(1, sqrt(a))) 
  d = R * b
  return(d)
}

下面是Erlang实现

lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
  P = math:pi() / 180,
  R = 6371, % Radius of Earth in KM
  A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
    math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
  R * 2 * math:asin(math:sqrt(A)).
function getDistanceFromLatLonInKm(position1, position2) {
    "use strict";
    var deg2rad = function (deg) { return deg * (Math.PI / 180); },
        R = 6371,
        dLat = deg2rad(position2.lat - position1.lat),
        dLng = deg2rad(position2.lng - position1.lng),
        a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
            + Math.cos(deg2rad(position1.lat))
            * Math.cos(deg2rad(position2.lat))
            * Math.sin(dLng / 2) * Math.sin(dLng / 2),
        c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return R * c;
}

console.log(getDistanceFromLatLonInKm(
    {lat: 48.7931459, lng: 1.9483572},
    {lat: 48.827167, lng: 2.2459745}
));

你也可以使用像geolib这样的模块:

安装方法:

$ npm install geolib

使用方法:

import { getDistance } from 'geolib'

const distance = getDistance(
    { latitude: 51.5103, longitude: 7.49347 },
    { latitude: "51° 31' N", longitude: "7° 28' E" }
)

console.log(distance)

文档: https://www.npmjs.com/package/geolib