给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
什么是简单的解决方案?(rand5() + rand5()) % 7 + 1 减少内存使用或在较慢的CPU上运行的有效解决方案是什么?是的,这是有效的,因为它只调用rand5()两次,空间复杂度为O(1)
考虑rand5()给出从1到5(包括)的随机数。 (1 + 1) % 7 + 1 = 3 (1 + 2) % 7 + 1 = 4 (1 + 3) % 7 + 1 = 5 (1 + 4) % 7 + 1 = 6 (1 + 5) % 7 + 1 = 7
(2 + 1) % 7 + 1 = 4 (2 + 2) % 7 + 1 = 5 (2 + 3) % 7 + 1 = 6 (2 + 4) % 7 + 1 = 7 (2 + 5) % 7 + 1 = 1 .
(5 + 1) % 7 + 1 = 7 (5 + 2) % 7 + 1 = 1 (5 + 3) % 7 + 1 = 2 (5 + 4) % 7 + 1 = 3 (5 + 5) % 7 + 1 = 4 .
等等
其他回答
这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法
假设我们已经在我们的作用域中有rand5():
def rand7():
# twoway = 0 or 1 in the same probability
twoway = None
while not twoway in (1, 2):
twoway = rand5()
twoway -= 1
ans = rand5() + twoway * 5
return ans if ans in range(1,8) else rand7()
解释
我们可以把这个程序分成两个部分:
循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。
附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。
但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。
结果
我做了一个简单的测试来观察我的答案的分布。
result = [ rand7() for x in xrange(777777) ]
ans = {
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
}
for i in result:
ans[i] += 1
print ans
它给了
{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}
因此,我们可以知道这个答案是正态分布。
简单的答案
如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:
def rand7():
ans = rand5() + (rand5()-1) * 5
return ans if ans < 8 else rand7()
这增加了大于8的值的概率,但这可能是这个问题的最短答案。
#!/usr/bin/env ruby
class Integer
def rand7
rand(6)+1
end
end
def rand5
rand(4)+1
end
x = rand5() # x => int between 1 and 5
y = x.rand7() # y => int between 1 and 7
..尽管这可能被认为是作弊。
int ans = 0;
while (ans == 0)
{
for (int i=0; i<3; i++)
{
while ((r = rand5()) == 3){};
ans += (r < 3) >> i
}
}
function rand7() {
while (true) { //lowest base 5 random number > 7 reduces memory
int num = (rand5()-1)*5 + rand5()-1;
if (num < 21) // improves performance
return 1 + num%7;
}
}
Python代码:
from random import randint
def rand7():
while(True):
num = (randint(1, 5)-1)*5 + randint(1, 5)-1
if num < 21:
return 1 + num%7
100000次运行的测试分布:
>>> rnums = []
>>> for _ in range(100000):
rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}
通过使用滚动总数,您可以同时
保持平均分配;而且 不需要牺牲随机序列中的任何元素。
这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。
import random
x = []
for i in range (0,7):
x.append (0)
t = 0
tt = 0
for i in range (0,700000):
########################################
##### qq.py #####
r = int (random.random () * 5)
t = (t + r) % 7
########################################
##### qq_notsogood.py #####
#r = 20
#while r > 6:
#r = int (random.random () * 5)
#r = r + int (random.random () * 5)
#t = r
########################################
x[t] = x[t] + 1
tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
if x[i] < low:
low = x[i]
if x[i] > high:
high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)
这个输出显示了结果:
pax$ python qq.py
0: 99908 14.27257
1: 100029 14.28986
2: 100327 14.33243
3: 100395 14.34214
4: 99104 14.15771
5: 99829 14.26129
6: 100408 14.34400
Variation = 1304 (0.18629%)
pax$ python qq.py
0: 99547 14.22100
1: 100229 14.31843
2: 100078 14.29686
3: 99451 14.20729
4: 100284 14.32629
5: 100038 14.29114
6: 100373 14.33900
Variation = 922 (0.13171%)
pax$ python qq.py
0: 100481 14.35443
1: 99188 14.16971
2: 100284 14.32629
3: 100222 14.31743
4: 99960 14.28000
5: 99426 14.20371
6: 100439 14.34843
Variation = 1293 (0.18471%)
一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:
pax$ python qq_notsogood.py
0: 31756 4.53657
1: 63304 9.04343
2: 95507 13.64386
3: 127825 18.26071
4: 158851 22.69300
5: 127567 18.22386
6: 95190 13.59857
Variation = 127095 (18.15643%)
pax$ python qq_notsogood.py
0: 31792 4.54171
1: 63637 9.09100
2: 95641 13.66300
3: 127627 18.23243
4: 158751 22.67871
5: 126782 18.11171
6: 95770 13.68143
Variation = 126959 (18.13700%)
pax$ python qq_notsogood.py
0: 31955 4.56500
1: 63485 9.06929
2: 94849 13.54986
3: 127737 18.24814
4: 159687 22.81243
5: 127391 18.19871
6: 94896 13.55657
Variation = 127732 (18.24743%)
并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:
import random
# rand5() returns 0 through 4 inclusive.
def rand5():
return int (random.random () * 5)
# rand7() generator returns 0 through 6 inclusive (using rand5()).
def rand7():
rand7ret = 0
while True:
rand7ret = (rand7ret + rand5()) % 7
yield rand7ret
# Number of test runs.
count = 700000
# Work out distribution.
distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
r = rgen.next()
distrib[r] = distrib[r] + 1
# Print distributions and calculate variation.
high = distrib[0]
low = distrib[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
if distrib[i] < low:
low = distrib[i]
if distrib[i] > high:
high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)