我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

为了尽量减少炸弹的数量,我们必须最大化每个炸弹的效果。要做到这一点,每一步我们都要选择最好的目标。对于每一个点,它和它的八个邻居的总和,可以被用作轰炸这一点的效率量。这将提供接近最佳的炸弹序列。

UPD:我们还应该考虑到零的数量,因为轰炸它们效率很低。事实上,问题是最小化击中零的数量。但我们不知道每一步如何使我们更接近这个目标。我同意这个问题是np完全的。我建议用贪婪的方法,它会给出一个接近真实的答案。

其他回答

这将是一个贪婪的方法:

计算一个阶为n X m的“score”矩阵,其中score[i][j]是如果位置(i,j)被炸毁,则矩阵中各点的总扣除额。(一个点的最高分数是9分,最低分数是0分) 逐行移动,找到并选择第一个得分最高的位置(例如(i,j))。 炸弹(i, j)。增加炸弹数量。 如果原矩阵的所有元素都不为零,则转到1。

但我怀疑这是否是最佳解决方案。

编辑:

我上面提到的贪心方法,虽然有效,但很可能不能给我们最优的解决方案。所以我想应该添加一些DP的元素。

我想我们可以同意,在任何时候,具有最高“分数”(分数[I][j] =总扣分,如果(I,j)被炸)的位置之一必须被瞄准。从这个假设开始,下面是新的方法:

NumOfBombs(M):(返回所需的最小炸弹数量)

给定一个矩阵M (n X M),如果M中的所有元素都为0,则返回0。 计算“分数”矩阵M。 设k个不同的位置P1 P2…Pk (1 <= k <= n*m),为m中得分最高的位置。 return (1 + min(NumOfBombs(M1), NumOfBombs(M2),…, NumOfBombs(Mk)) M1, M2,……,Mk是我们轰炸位置P1, P2,…, Pk。

此外,如果我们想在此基础上破坏位置的顺序,我们必须跟踪“min”的结果。

这个贪婪的解决方案似乎是正确的:

正如评论中指出的那样,它在2D中会失败。但也许你可以改进它。

1 d: 如果至少有2个数字,你不需要从最左边的那个开始射击,因为从第二个开始射击并不差。所以射到第二个,而第一个不是0,因为你必须这么做。移动到下一个单元格。不要忘记最后一个单元格。

c++代码:

void bombs(vector<int>& v, int i, int n){
    ans += n;
    v[i] -= n;
    if(i > 0)
        v[i - 1] -= n;
    if(i + 1< v.size())
        v[i + 1] -= n;
}

void solve(vector<int> v){
    int n = v.size();
    for(int i = 0; i < n;++i){
        if(i != n - 1){
            bombs(v, i + 1, v[i]);
        }
        else
            bombs(v, i, v[i])
    }
}

对于2D: 再次强调:你不需要在第一行拍摄(如果有第二行)。所以要射到第二个。解决第一行的1D任务。(因为你需要使它为空)。下降。别忘了最后一排。

评价函数,总和:

int f (int ** matrix, int width, int height, int x, int y)
{
    int m[3][3] = { 0 };

    m[1][1] = matrix[x][y];
    if (x > 0) m[0][1] = matrix[x-1][y];
    if (x < width-1) m[2][1] = matrix[x+1][y];

    if (y > 0)
    {
        m[1][0] = matrix[x][y-1];
        if (x > 0) m[0][0] = matrix[x-1][y-1];
        if (x < width-1) m[2][0] = matrix[x+1][y-1];
    }

    if (y < height-1)
    {
        m[1][2] = matrix[x][y+1];
        if (x > 0) m[0][2] = matrix[x-1][y+1];
        if (x < width-1) m[2][2] = matrix[x+1][y+1];
    }

    return m[0][0]+m[0][1]+m[0][2]+m[1][0]+m[1][1]+m[1][2]+m[2][0]+m[2][1]+m[2][2];
}

目标函数:

Point bestState (int ** matrix, int width, int height)
{
    Point p = new Point(0,0);
    int bestScore = 0;
    int b = 0;

    for (int i=0; i<width; i++)
        for (int j=0; j<height; j++)
        {
            b = f(matrix,width,height,i,j);

            if (b > bestScore)
            {
                bestScore = best;
                p = new Point(i,j);
            }
        }

    retunr p;
}

破坏功能:

void destroy (int ** matrix, int width, int height, Point p)
{
    int x = p.x;
    int y = p.y;

    if(matrix[x][y] > 0) matrix[x][y]--;
    if (x > 0) if(matrix[x-1][y] > 0) matrix[x-1][y]--;
    if (x < width-1) if(matrix[x+1][y] > 0) matrix[x+1][y]--;

    if (y > 0)
    {
        if(matrix[x][y-1] > 0) matrix[x][y-1]--;
        if (x > 0) if(matrix[x-1][y-1] > 0) matrix[x-1][y-1]--;
        if (x < width-1) if(matrix[x+1][y-1] > 0) matrix[x+1][y-1]--;
    }

    if (y < height-1)
    {
        if(matrix[x][y] > 0) matrix[x][y+1]--;
        if (x > 0) if(matrix[x-1][y+1] > 0) matrix[x-1][y+1]--;
        if (x < width-1) if(matrix[x+1][y+1] > 0) matrix[x+1][y+1]--;
    }
}

目标函数:

bool isGoal (int ** matrix, int width, int height)
{
    for (int i=0; i<width; i++)
        for (int j=0; j<height; j++)
            if (matrix[i][j] > 0)
                return false;
    return true;
}

线性最大化函数:

void solve (int ** matrix, int width, int height)
{
    while (!isGoal(matrix,width,height))
    {
        destroy(matrix,width,height, bestState(matrix,width,height));
    }
}

这不是最优的,但可以通过找到更好的评价函数来优化。

. .但是考虑到这个问题,我在想一个主要的问题是在0中间的某个点上得到废弃的数字,所以我要采取另一种方法。这是支配最小值为零,然后试图转义零,这导致一般的最小现有值(s)或这样

由于时间不够,我不得不停留在部分解决方案上,但希望即使是这个部分解决方案也能提供解决这个问题的潜在方法的一些见解。

当面对一个困难的问题时,我喜欢想出一些简单的问题来培养对问题空间的直觉。这里,我采取的第一步是将这个二维问题简化为一维问题。考虑一行字:

0 4 2 1 3 0 1

不管怎样,你知道你需要在4点附近炸4次才能把它降到0。因为左边是一个较低的数字,所以轰炸0或4比轰炸2没有任何好处。事实上,我相信(但缺乏严格的证明)轰炸2,直到4点降到0,至少和任何其他策略一样好,让4点降到0。从左到右,我们可以采用如下策略:

index = 1
while index < line_length
  while number_at_index(index - 1) > 0
    bomb(index)
  end
  index++
end
# take care of the end of the line
while number_at_index(index - 1) > 0
  bomb(index - 1)
end

几个轰炸命令示例:

0 4[2]1 3 0 1
0 3[1]0 3 0 1
0 2[0]0 3 0 1
0 1[0]0 3 0 1
0 0 0 0 3[0]1
0 0 0 0 2[0]0
0 0 0 0 1[0]0
0 0 0 0 0 0 0

4[2]1 3 2 1 5
3[1]0 3 2 1 5
2[0]0 3 2 1 5
1[0]0 3 2 1 5
0 0 0 3[2]1 5
0 0 0 2[1]0 5
0 0 0 1[0]0 5
0 0 0 0 0 0[5]
0 0 0 0 0 0[4]
0 0 0 0 0 0[3]
0 0 0 0 0 0[2]
0 0 0 0 0 0[1]
0 0 0 0 0 0 0

从一个需要以某种方式下降的数字开始是一个很有吸引力的想法,因为它突然变得可以找到一个解,就像一些人声称的那样,至少和所有其他解一样好。

The next step up in complexity where this search of at least as good is still feasible is on the edge of the board. It is clear to me that there is never any strict benefit to bomb the outer edge; you're better off bombing the spot one in and getting three other spaces for free. Given this, we can say that bombing the ring one inside of the edge is at least as good as bombing the edge. Moreover, we can combine this with the intuition that bombing the right one inside of the edge is actually the only way to get edge spaces down to 0. Even more, it is trivially simple to figure out the optimal strategy (in that it is at least as good as any other strategy) to get corner numbers down to 0. We put this all together and can get much closer to a solution in the 2-D space.

根据对角子的观察,我们可以肯定地说,我们知道从任何起始棋盘到所有角子都是0的棋盘的最佳策略。这是一个这样的板的例子(我借用了上面两个线性板的数字)。我用不同的方式标记了一些空间,我会解释为什么。

0 4 2 1 3 0 1 0
4 x x x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

你会注意到,最上面一行和我们之前看到的线性例子非常相似。回想一下我们之前的观察,将第一行全部降为0的最佳方法是破坏第二行(x行)。轰炸任何y行都无法清除顶部行,轰炸顶部行也没有比轰炸x行相应空间更多的好处。

我们可以从上面应用线性策略(轰炸x行上的相应空间),只关注第一行,不关注其他任何内容。大概是这样的:

0 4 2 1 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 3 1 0 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 2 0 0 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 1 0 0 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 0 0 0 3 0 1 0
4 x x x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

The flaw in this approach becomes very obvious in the final two bombings. It is clear, given that the only bomb sites that reduce the 4 figure in the first column in the second row are the first x and the y. The final two bombings are clearly inferior to just bombing the first x, which would have done the exact same (with regard to the first spot in the top row, which we have no other way of clearing). Since we have demonstrated that our current strategy is suboptimal, a modification in strategy is clearly needed.

在这一点上,我可以退一步,只关注一个角落。让我们考虑一下这个问题:

0 4 2 1
4 x y a
2 z . .
1 b . .

It is clear the only way to get the spaces with 4 down to zero are to bomb some combination of x, y, and z. With some acrobatics in my mind, I'm fairly sure the optimal solution is to bomb x three times and then a then b. Now it's a matter of figuring out how I reached that solution and if it reveals any intuition we can use to even solve this local problem. I notice that there's no bombing of y and z spaces. Attempting to find a corner where bombing those spaces makes sense yields a corner that looks like this:

0 4 2 5 0
4 x y a .
2 z . . .
5 b . . .
0 . . . .

对于这个问题,我很清楚,最优解决方案是轰炸y 5次,z 5次。让我们更进一步。

0 4 2 5 6 0 0
4 x y a . . .
2 z . . . . .
5 b . . . . .
6 . . . . . .
0 . . . . . .
0 . . . . . .

这里,最优解决方案是轰炸a和b 6次,然后x 4次。

现在它变成了一个如何将这些直觉转化为我们可以建立的原则的游戏。

希望能继续!

永远不要轰炸边界(除非正方形没有边界以外的邻居) 零角落。 到零角,将对角线上一个正方形的角的值降低(唯一的非边界邻居) 这会产生新的角落。见第2节

编辑:没有注意到Kostek提出了几乎相同的方法,所以现在我提出了更强烈的主张: 如果要清除的角总是选择在最外层,那么它是最优的。

在OP的例子中:在除5之外的任何地方掉落2(1+1或2)并不会导致掉落5所能击中的任何方块。所以我们必须在5上加上2(在左下角加上6…)

在这之后,只有一种方法可以清除(在左上角)角落里原本是1(现在是0)的东西,那就是在B3上删除0(类似excel的符号)。 等等。

只有在清除了整个A和E列以及1和7行之后,才开始更深一层的清理。

考虑只清除那些故意清除的角落,清除0值的角落不需要花费任何成本,并且简化了思考。

因为所有以这种方式投掷的炸弹都必须被投掷,并且这将导致清除战场,这是最佳解决方案。


睡了一觉后,我意识到这不是真的。 考虑

  ABCDE    
1 01000
2 10000
3 00000
4 00000

我的方法是在B3和C2上投放炸弹,而在B2上投放炸弹就足够了