我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

为了尽量减少炸弹的数量,我们必须最大化每个炸弹的效果。要做到这一点,每一步我们都要选择最好的目标。对于每一个点,它和它的八个邻居的总和,可以被用作轰炸这一点的效率量。这将提供接近最佳的炸弹序列。

UPD:我们还应该考虑到零的数量,因为轰炸它们效率很低。事实上,问题是最小化击中零的数量。但我们不知道每一步如何使我们更接近这个目标。我同意这个问题是np完全的。我建议用贪婪的方法,它会给出一个接近真实的答案。

其他回答

这里有一个解决方案,推广良好的性质的角。

让我们假设我们可以为给定的字段找到一个完美的落点,也就是说,一个减少其中值的最佳方法。然后,为了找到最少的炸弹数量,一个算法的初稿可能是(代码是从ruby实现中复制粘贴的):

dropped_bomb_count = 0
while there_are_cells_with_non_zero_count_left
  coordinates = choose_a_perfect_drop_point
  drop_bomb(coordinates)
  dropped_bomb_count += 1
end
return dropped_bomb_count

挑战是choose_a_perfect_drop_point。首先,让我们定义一个完美的落点是什么。

(x, y)的放置点会减少(x, y)中的值。它也可能会减少其他单元格中的值。 (x, y)的放置点A比(x, y)的放置点b更好,如果它减少了b所减少的单元格的适当超集中的值。 如果没有其他更好的投放点,投放点是最大的。 (x, y)的两个放置点是等效的,如果它们减少了同一组单元格。 如果(x, y)的放置点等价于(x, y)的所有最大放置点,那么它就是完美的。

如果(x, y)存在一个完美的投放点,那么您不能比在(x, y)的一个完美投放点上投放炸弹更有效地降低(x, y)处的值。

给定字段的完美放置点是其任何单元格的完美放置点。

以下是一些例子:

1 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

单元格(0,0)(从零开始的索引)的完美放置点是(1,1)。(1,1)的所有其他放置点,即(0,0)、(0,1)和(1,0),减少的单元格较少。

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

单元格(2,2)(从零开始的索引)的完美落点是(2,2),以及所有周围的单元格(1,1)、(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2)和(3,3)。

0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

单元格(2,2)的完美放置点是(3,1):它减少了(2,2)中的值和(4,0)中的值。(2,2)的所有其他放置点都不是最大的,因为它们减少了一个单元格。(2,2)的完美下拉点也是(4,0)的完美下拉点,它是字段的唯一完美下拉点。它为这个领域带来了完美的解决方案(一颗炸弹)。

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 0 0

(2,2)没有完美的落点:(1,1)和(1,3)都减少(2,2)和另一个单元格(它们是(2,2)的最大落点),但它们不相等。然而,(1,1)是(0,0)的完美落点,(1,3)是(0,4)的完美落点。

根据完美落点的定义和一定的检查顺序,我得到了以下问题示例的结果:

Drop bomb on 1, 1
Drop bomb on 1, 1
Drop bomb on 1, 5
Drop bomb on 1, 5
Drop bomb on 1, 5
Drop bomb on 1, 6
Drop bomb on 1, 2
Drop bomb on 1, 2
Drop bomb on 0, 6
Drop bomb on 0, 6
Drop bomb on 2, 1
Drop bomb on 2, 5
Drop bomb on 2, 5
Drop bomb on 2, 5
Drop bomb on 3, 1
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 4
Drop bomb on 3, 4
Drop bomb on 3, 3
Drop bomb on 3, 3
Drop bomb on 3, 6
Drop bomb on 3, 6
Drop bomb on 3, 6
Drop bomb on 4, 6
28

然而,该算法只有在每一步之后至少有一个完美落点时才能工作。可以在没有完美落点的情况下构建例子:

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

对于这些情况,我们可以修改算法,这样我们就不会选择完美的落点,而是选择一个具有最大落点的最小选择的坐标,然后计算每个选择的最小值。在上面的例子中,所有有值的单元格都有两个最大落点。例如,(0,1)有最大落点(1,1)和(1,2)。选择其中任何一个,然后计算最小值,会得到这样的结果:

Drop bomb on 1, 1
Drop bomb on 2, 2
Drop bomb on 1, 2
Drop bomb on 2, 1
2

到目前为止,一些答案给出了指数时间,一些涉及动态规划。我怀疑这些是否有必要。

我的解是O(mnS)其中m和n是板子的维度,S是所有整数的和。这个想法相当野蛮:找到每次可以杀死最多的位置,并在0处终止。

对于给定的棋盘,它给出28步棋,并且在每次落子后打印出棋盘。

完整的,不言自明的代码:

import java.util.Arrays;

public class BombMinDrops {

    private static final int[][] BOARD = {{2,3,4,7,1}, {1,5,2,6,2}, {4,3,4,2,1}, {2,1,2,4,1}, {3,1,3,4,1}, {2,1,4,3,2}, {6,9,1,6,4}};
    private static final int ROWS = BOARD.length;
    private static final int COLS = BOARD[0].length;
    private static int remaining = 0;
    private static int dropCount = 0;
    static {
        for (int i = 0; i < ROWS; i++) {
            for (int j = 0; j < COLS; j++) {
                remaining = remaining + BOARD[i][j];
            }
        }
    }

    private static class Point {
        int x, y;
        int kills;

        Point(int x, int y, int kills) {
            this.x = x;
            this.y = y;
            this.kills = kills;
        }

        @Override
        public String toString() {
            return dropCount + "th drop at [" + x + ", " + y + "] , killed " + kills;
        }
    }

    private static int countPossibleKills(int x, int y) {
        int count = 0;
        for (int row = x - 1; row <= x + 1; row++) {
            for (int col = y - 1; col <= y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) count++;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        return count;
    }

    private static void drop(Point here) {
        for (int row = here.x - 1; row <= here.x + 1; row++) {
            for (int col = here.y - 1; col <= here.y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) BOARD[row][col]--;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        dropCount++;
        remaining = remaining - here.kills;
        print(here);
    }

    public static void solve() {
        while (remaining > 0) {
            Point dropWithMaxKills = new Point(-1, -1, -1);
            for (int i = 0; i < ROWS; i++) {
                for (int j = 0; j < COLS; j++) {
                    int possibleKills = countPossibleKills(i, j);
                    if (possibleKills > dropWithMaxKills.kills) {
                        dropWithMaxKills = new Point(i, j, possibleKills);
                    }
                }
            }

            drop(dropWithMaxKills);
        }

        System.out.println("Total dropped: " + dropCount);
    }

    private static void print(Point drop) {
        System.out.println(drop.toString());
        for (int[] row : BOARD) {
            System.out.println(Arrays.toString(row));
        }

        System.out.println();
    }

    public static void main(String[] args) {
        solve();
    }

}

蛮力!

我知道它效率不高,但即使你找到了一个更快的算法,你也可以对这个结果进行测试,以了解它有多准确。

使用一些递归,像这样:

void fn(tableState ts, currentlevel cl)
{
  // first check if ts is all zeros yet, if not:
  //
  // do a for loop to go through all cells of ts, 
  // for each cell do a bomb, and then
  // call: 
  // fn(ts, cl + 1);

}

你可以通过缓存来提高效率,如果不同的方法导致相同的结果,你不应该重复相同的步骤。

阐述:

如果轰炸单元格1,3,5的结果与轰炸单元格5,3,1的结果相同,那么,对于这两种情况,您不应该重新执行所有后续步骤,只需1就足够了,您应该将所有表状态存储在某个地方并使用其结果。

表统计信息的散列可以用于快速比较。

如果你想要绝对最优解来清理棋盘,你将不得不使用经典的回溯,但如果矩阵非常大,它将需要很长时间才能找到最佳解,如果你想要一个“可能的”最优解,你可以使用贪婪算法,如果你需要帮助写算法,我可以帮助你

现在想想,这是最好的办法。在那里制作另一个矩阵,存储通过投掷炸弹而移除的点,然后选择点数最多的单元格,并在那里投掷炸弹更新点数矩阵,然后继续。例子:

2 3 5 -> (2+(1*3)) (3+(1*5)) (5+(1*3))
1 3 2 -> (1+(1*4)) (3+(1*7)) (2+(1*4))
1 0 2 -> (1+(1*2)) (0+(1*5)) (2+(1*2))

对于每个相邻的高于0的单元格,单元格值+1

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。