有了一个点列表,我如何确定它们是否是顺时针顺序的?

例如:

point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)

会说它是逆时针的(对某些人来说是逆时针的)


当前回答

这是我使用其他答案中的解释的解决方案:

def segments(poly):
    """A sequence of (x,y) numeric coordinates pairs """
    return zip(poly, poly[1:] + [poly[0]])

def check_clockwise(poly):
    clockwise = False
    if (sum(x0*y1 - x1*y0 for ((x0, y0), (x1, y1)) in segments(poly))) < 0:
        clockwise = not clockwise
    return clockwise

poly = [(2,2),(6,2),(6,6),(2,6)]
check_clockwise(poly)
False

poly = [(2, 6), (6, 6), (6, 2), (2, 2)]
check_clockwise(poly)
True

其他回答

另一个解决方案是;

const isClockwise = (vertices=[]) => {
    const len = vertices.length;
    const sum = vertices.map(({x, y}, index) => {
        let nextIndex = index + 1;
        if (nextIndex === len) nextIndex = 0;

        return {
            x1: x,
            x2: vertices[nextIndex].x,
            y1: x,
            y2: vertices[nextIndex].x
        }
    }).map(({ x1, x2, y1, y2}) => ((x2 - x1) * (y1 + y2))).reduce((a, b) => a + b);

    if (sum > -1) return true;
    if (sum < 0) return false;
}

把所有的顶点作为一个数组;

const vertices = [{x: 5, y: 0}, {x: 6, y: 4}, {x: 4, y: 5}, {x: 1, y: 5}, {x: 1, y: 0}];
isClockwise(vertices);

一些建议的方法在非凸多边形(如新月形)的情况下会失败。这里有一个简单的方法,它可以用于非凸多边形(它甚至可以用于自相交的多边形,如数字8,告诉你它是否主要是顺时针)。

对边求和,(x2−x1)(y2 + y1)如果结果是正的,曲线是顺时针的,如果结果是负的,曲线是逆时针的。(结果是封闭面积的两倍,采用+/-惯例。)

point[0] = (5,0)   edge[0]: (6-5)(4+0) =   4
point[1] = (6,4)   edge[1]: (4-6)(5+4) = -18
point[2] = (4,5)   edge[2]: (1-4)(5+5) = -30
point[3] = (1,5)   edge[3]: (1-1)(0+5) =   0
point[4] = (1,0)   edge[4]: (5-1)(0+0) =   0
                                         ---
                                         -44  counter-clockwise

我将提出另一个解决方案,因为它很简单,不需要大量的数学运算,它只是使用了基本的代数。计算多边形的带符号面积。如果是负的,点是顺时针的,如果是正的,点是逆时针的。(这与Beta的解决方案非常相似。)

计算带符号的面积: A = 1/2 * (x1*y2 - x2*y1 + x2*y3 - x3*y2 +…+ xn*y1 - x1*yn)

或者在伪代码中:

signedArea = 0
for each point in points:
    x1 = point[0]
    y1 = point[1]
    if point is last point
        x2 = firstPoint[0]
        y2 = firstPoint[1]
    else
        x2 = nextPoint[0]
        y2 = nextPoint[1]
    end if

    signedArea += (x1 * y2 - x2 * y1)
end for
return signedArea / 2

注意,如果你只是检查顺序,你不需要麻烦除以2。

来源:http://mathworld.wolfram.com/PolygonArea.html

一个计算上更简单的方法,如果你已经知道多边形内的一个点:

从原始多边形中选择任意线段,按此顺序选择点及其坐标。 加上一个已知的“内部”点,形成一个三角形。 根据以上三点计算CW或CCW。

正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号

如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。

在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。