有了一个点列表,我如何确定它们是否是顺时针顺序的?

例如:

point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)

会说它是逆时针的(对某些人来说是逆时针的)


当前回答

这是我使用其他答案中的解释的解决方案:

def segments(poly):
    """A sequence of (x,y) numeric coordinates pairs """
    return zip(poly, poly[1:] + [poly[0]])

def check_clockwise(poly):
    clockwise = False
    if (sum(x0*y1 - x1*y0 for ((x0, y0), (x1, y1)) in segments(poly))) < 0:
        clockwise = not clockwise
    return clockwise

poly = [(2,2),(6,2),(6,6),(2,6)]
check_clockwise(poly)
False

poly = [(2, 6), (6, 6), (6, 2), (2, 2)]
check_clockwise(poly)
True

其他回答

对于那些不想“重新发明轮子”的人,我认为值得一提的是,这个检查是在一个名为Shapely (github)的漂亮的Python包中实现的(它基于GEOS C/ c++库):

Shapely is a BSD-licensed Python package for manipulation and analysis of planar geometric objects. It is using the widely deployed open-source geometry library GEOS (the engine of PostGIS, and a port of JTS). Shapely wraps GEOS geometries and operations to provide both a feature rich Geometry interface for singular (scalar) geometries and higher-performance NumPy ufuncs for operations using arrays of geometries. Shapely is not primarily focused on data serialization formats or coordinate systems, but can be readily integrated with packages that are.

来源:https://shapely.readthedocs.io/en/stable/

一个给出OP坐标的小例子:

import numpy as np
from shapely.geometry import Polygon

points = np.array([
    (5,0),
    (6,4),
    (4,5),
    (1,5),
    (1,0)
])

P = Polygon(points)

这是新构造的多边形:

import matplotlib.pyplot as plt

x,y = P.exterior.coords.xy
plt.plot(x,y)
plt.axis('equal')
plt.grid()
plt.show()

你可以直接使用LinearRing的is_ccw属性来检查多边形是CW还是CCW:

type(P.exterior)
>: shapely.geometry.polygon.LinearRing

P.exterior.is_ccw
>: True

如果颠倒:

points = np.flipud(points)
points
>: 
array([[1, 0],
       [1, 5],
       [4, 5],
       [6, 4],
       [5, 0]])


P1 = Polygon(points)

P1.exterior.is_ccw
>: True

进一步阅读的文档和参考资料:

shaely is_ccw (github): https://github.com/shapely/shapely/blob/eba985c6e0170ecdd90c83592fd0afa7ae793cb8/shapely/predicates.py#L72-L108 Libgeos (github): https://github.com/libgeos/geos GEOS API参考:https://libgeos.org/doxygen/classgeos_1_1algorithm_1_1Orientation.html#a5af93795969b80f97d7997195974d7c8 GEOS实现(github): https://github.com/libgeos/geos/blob/ab0ce6dafdf7f75ec6d234b6c65bb209037dda17/src/algorithm/Orientation.cpp#L43-L133

找出y最小的顶点(如果有平手,则x最大)。假设顶点是A,列表中的前一个顶点是B,列表中的下一个顶点是c。现在计算AB和AC的叉乘的符号。


引用:

如何确定一个简单多边形的方向?在 常见问题:计算机。图形。算法。 维基百科的曲线定位。

一些建议的方法在非凸多边形(如新月形)的情况下会失败。这里有一个简单的方法,它可以用于非凸多边形(它甚至可以用于自相交的多边形,如数字8,告诉你它是否主要是顺时针)。

对边求和,(x2−x1)(y2 + y1)如果结果是正的,曲线是顺时针的,如果结果是负的,曲线是逆时针的。(结果是封闭面积的两倍,采用+/-惯例。)

point[0] = (5,0)   edge[0]: (6-5)(4+0) =   4
point[1] = (6,4)   edge[1]: (4-6)(5+4) = -18
point[2] = (4,5)   edge[2]: (1-4)(5+5) = -30
point[3] = (1,5)   edge[3]: (1-1)(0+5) =   0
point[4] = (1,0)   edge[4]: (5-1)(0+0) =   0
                                         ---
                                         -44  counter-clockwise

这是OpenLayers 2的实现函数。有一个顺时针多边形的条件是面积< 0,这是由这个参考确定的。

function IsClockwise(feature)
{
    if(feature.geometry == null)
        return -1;

    var vertices = feature.geometry.getVertices();
    var area = 0;

    for (var i = 0; i < (vertices.length); i++) {
        j = (i + 1) % vertices.length;

        area += vertices[i].x * vertices[j].y;
        area -= vertices[j].x * vertices[i].y;
        // console.log(area);
    }

    return (area < 0);
}

正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号

如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。

在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。