给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。
public static int random_7(Random rg) {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + SimulateFairCoin(rg);
}
}
return returnValue;
}
private static int SimulateFairCoin(Random rg) {
while (true) {
int flipOne = random_5_mod_2(rg);
int flipTwo = random_5_mod_2(rg);
if (flipOne == 0 && flipTwo == 1) {
return 0;
}
else if (flipOne == 1 && flipTwo == 0) {
return 1;
}
}
}
private static int random_5_mod_2(Random rg) {
return random_5(rg) % 2;
}
private static int random_5(Random rg) {
return rg.Next(5) + 1;
}
其他回答
以下是我的发现:
Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)
然后我们得到1~7的范围,这是我们正在寻找的Random7。
这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法
假设我们已经在我们的作用域中有rand5():
def rand7():
# twoway = 0 or 1 in the same probability
twoway = None
while not twoway in (1, 2):
twoway = rand5()
twoway -= 1
ans = rand5() + twoway * 5
return ans if ans in range(1,8) else rand7()
解释
我们可以把这个程序分成两个部分:
循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。
附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。
但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。
结果
我做了一个简单的测试来观察我的答案的分布。
result = [ rand7() for x in xrange(777777) ]
ans = {
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
}
for i in result:
ans[i] += 1
print ans
它给了
{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}
因此,我们可以知道这个答案是正态分布。
简单的答案
如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:
def rand7():
ans = rand5() + (rand5()-1) * 5
return ans if ans < 8 else rand7()
这增加了大于8的值的概率,但这可能是这个问题的最短答案。
这是我想到的答案,但这些复杂的答案让我认为这是完全错误的/:))
import random
def rand5():
return float(random.randint(0,5))
def rand7():
random_val = rand5()
return float(random.randint((random_val-random_val),7))
print rand7()
这个怎么样
rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2
不确定这是均匀分布的。有什么建议吗?
我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。
也许亚当·罗森菲尔德会好心地评论一下?
我(天真?)的想法是这样的:
积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。
为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:
(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7
rand7()函数如下:
(我让rand5的范围是0-4,rand7也是0-6。)
int rand7(){
static int a=0;
static int e=0;
int r;
a = a * 5 + rand5();
e = e + 5; // added 5/7ths of a rand7 number
if ( e<7 ){
a = a * 5 + rand5();
e = e + 5; // another 5/7ths
}
r = a % 7;
e = e - 7; // removed a rand7 number
a = a % 7;
return r;
}
编辑:增加了1亿次试验的结果。
'Real' rand函数mod 5或7
rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046
我的边缘7
平均数看起来不错,数字分布也不错。
Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943